2023

PATTERNS \& SEQUENCES:

Questions ○ Memos ○ Diagnostic Report

PATTERNS \& SEQUENCES (63\%): DBE NOV. 2023

QUESTION 2 72\%

2.1 Given the arithmetic series: $7+12+17+\ldots$ 89\%
2.1.1 Determine the value of T_{91}
2.1.2 Calculate S_{91}
2.1.3 Calculate the value of n for which

$$
\begin{equation*}
T_{n}=517 \tag{3}
\end{equation*}
$$

Memo

2.1 A.S.: $7+12+17+$
2.1.1 $\mathbf{a}=7$; $\mathbf{d}=5$; $\mathbf{T}_{\mathbf{9 1}}$? ; $\mathbf{n}=91$

$$
\begin{aligned}
\mathbf{T}_{\mathbf{n}} & =\mathbf{a}+(\mathbf{n}-\mathbf{1}) \mathbf{d} \\
\mathrm{T}_{91} & =7+(91-1)(5) \\
& =457<
\end{aligned}
$$

OR: General term, $\mathbf{T}_{\mathbf{n}}=\mathbf{a n} \mathbf{+ b}$ where $\mathbf{a}=5$ and $\mathbf{b}=2$ $\mathrm{T}_{91}=5(91)+2$
$=457<$
2.1.2 $\quad \mathbf{S}_{\mathbf{n}}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}+\mathbf{T}_{\mathbf{n}}\right)$
$\therefore \mathbf{S}_{\mathbf{9 1}}=\frac{91}{2}\left(7+T_{91}\right)$
$=\frac{91}{2}(7+457)$

$$
=21112<
$$

$$
\left[\begin{array}{rl}
O R: \quad \mathbf{S}_{\mathbf{n}} & =\frac{\mathbf{n}}{\mathbf{2}}[\mathbf{2 a + (\mathbf { n } - \mathbf { 1 }) \mathbf { d }]} \\
\therefore \mathbf{S}_{\mathbf{9 1}} & =\frac{91}{2}[2(7)+(91-1)(5)] \\
& =\mathbf{2 1} 112<
\end{array}\right)
$$

2.1.3 $\mathbf{n} \boldsymbol{?} ; \mathbf{T}_{\mathbf{n}}=517$
$\mathrm{T}_{\mathrm{n}}=\mathbf{a + (n - 1) d \Rightarrow 5 1 7 = 7 + (n - 1) (5)}$ $517=7+5 n-5$
$\begin{aligned} & 515\end{aligned}=5 n$
n = $103<$
$\left(\begin{array}{rl}O R: \mathbf{T}_{\mathbf{n}} & =\mathbf{a n}+\mathbf{b} \\ \therefore 517 & =5 n+2 \\ \therefore 515 & =5 n \\ \therefore \mathbf{n} & =\mathbf{1 0 3}\end{array}\right)$

Common Errors and Misconceptions

(a) The most common errors in Q2.1 and its sub-questions were the use of incorrect formulae (i.e. $T_{n}=a(n-1) d$ rather than $\left.T_{n}=a+(n-1) d\right)$ or incorrect substitution of n as T_{n} or S_{n}.
(b) Many candidates substituted $\mathrm{n}=5$ into the given T_{n} formula in Q2.1.2 to answer Q2.1.1 rather than developing the quadratic pattern. The candidates knew how to develop the pattern as this was well done in Q2.1.2, when asked to show that the quadratic pattern had a general term of $T_{n}=6 n^{2}-9 n+6$, but the link was not made between determining the formula of a quadratic pattern and generation of the quadratic pattern.
2.2 The following information is given about a quadratic 55% number pattern:
$\mathrm{T}_{1}=3, \quad \mathrm{~T}_{2}-\mathrm{T}_{1}=9$ and $\mathrm{T}_{3}-\mathrm{T}_{2}=21$
2.2.1 Show that $T_{5}=111$
2.2.2 Show that the general term of the quadratic pattern is
$T_{n}=6 n^{2}-9 n+6$
2.2.3 Show that the pattern is increasing for all $n \in N$.

Memo

2.2.1 General form: $\mathbf{T}_{\mathbf{n}}=\mathbf{a n}^{\mathbf{2}} \boldsymbol{+} \mathbf{b n}+\mathbf{c}$
$\mathrm{T}_{1}=3 ; \mathrm{T}_{2}-\mathrm{T}_{1}=9$ and $\mathrm{T}_{3}-\mathrm{T}_{2}=21$
\therefore The pattern:
$1^{\text {st }}$ differences:
$2^{\text {nd }}$ differences

$$
T_{5}=66+45=111<
$$

2.2.2 $\quad \mathrm{T}_{1}=a+b+c=3$

$$
\mathbf{2 a}=12
$$

. Common $2^{\text {nd }}$ difference
a $=6$
\& $\mathbf{3 a + b}=9 \quad \ldots$ The first $1^{\text {st }}$ difference
$\therefore 18+b=9$
$\therefore b=-9$
$6+(-9)+c=3$
$\therefore c=6$
$T n=6 n^{2}-9 n+6<$
$\frac{d T_{n}}{d n}=12 n-9$
If $n>\frac{3}{4} \quad 12 n-9>0$
Since $n \in \mathbb{N}$ the derivative will always be positive
T_{n} is always increasing for all $\mathrm{n} \in \mathbb{N}<$

OR: $T n=6 n^{2}-9 n+6$
A of $S: n=-\frac{-9}{2(6)}$
$=\frac{3}{4}$

$\mathbf{T}_{\mathbf{n}}$ is always increasing for all $\mathbf{n} \in \mathbb{N}<$

$$
\begin{aligned}
& \text { OR: } \\
& \begin{aligned}
\mathbf{T} \mathbf{n}+1-\mathbf{T}_{\mathbf{n}} & =6(n+1)^{2}-9(n+1)+6-\left(6 n^{2}-9 n+6\right) \\
& =6\left(n^{2}+2 n+1\right)-9 n-9+6-6 n^{2}+9 n-6 \\
& =6 n^{2}+12 n+6-9-6 n^{2} \\
& =12 n-3
\end{aligned}
\end{aligned}
$$

Since $\mathrm{n} \geq 1$ and a whole number
. . since $n=$ the number of terms
$12 n-3$ has a minimum value of $12(1)-3=9$, which is positive

The difference between consecutive terms $\mathrm{T}_{\mathbf{n}}$ and T_{n+1} will always be positive.

The pattern is increasing for all $\mathrm{n} \in \mathbb{N}$ <

Common Errors and Misconceptions

(c) In Q2.2.3 most candidates could not show that the pattern was increasing for all natural numbers.

They were not able to
manipulate the quadratic

pattern as a quadratic

function to provide the argument
of where the axis of symmetry
of the pattern was.

(a) Learners must be made aware of which formulae on the information sheet apply to which type of sequence. It is good practice for them to use the information sheet in class so that they become familiar with it.
(b) Teach learners how to identify whether the question requires them to calculate the value of the $\mathrm{n}^{\text {th }}$ term the sum of the first n terms.
(c) Questions must be read carefully so that the learners know what is required of them.
(d) Learners should be discouraged from using information provided in later questions to answer earlier questions in an examination. Learners must be encouraged to develop patterns using their properties rather than using their explicit general terms. The understanding of where a pattern 'starts' and what the pattern 'does' is important to emphasise. The basic diagram was sufficient in answering Q2.2.1.

(e) Teachers need to specifically teach the relationships between a quadratic pattern and a parabola, making particular reference to the axis of symmetry and minimum or maximum values of the pattern.

QUESTION 3 48\%

3.1 Given the geometric series: $3+6+12+\ldots$ to n terms. 60\%
3.1.1 Write down the general term of this series.
3.1.2 Calculate the value of k such that:

$$
\begin{equation*}
\sum_{p=1}^{\mathrm{k}} \frac{3}{2}(2)^{\mathrm{p}}=98301 \tag{4}
\end{equation*}
$$

Memo

$$
\begin{aligned}
& \text { 3.1 } \mathbf{G . S . : ~} 3+6+12+\ldots \text { to } n \text { terms } \\
& \text { 3.1.1 } \mathbf{a}=3 ; \mathbf{r}=2 \\
& \mathrm{~T}_{\mathrm{n}}=\operatorname{ar}^{\mathrm{n}-1} \Rightarrow \mathrm{~T}_{\mathrm{n}}=3.2^{\mathrm{n}-1} \text { < } \\
& \text { 3.1.2 } \sum_{\mathrm{p}=1}^{\mathrm{k}} \frac{3}{2}(2)^{\mathrm{p}}=98301 \ldots \text { i.e. } \mathbf{S}_{\mathbf{k}}=98301 \\
& \text { LHS }=\frac{3}{2}(2)^{1}+\frac{3}{2}(2)^{2}+\frac{3}{2}(2)^{3}+\ldots+\frac{3}{2}(2)^{\mathrm{k}} \\
& \quad=3+6+12+\ldots+\frac{3}{2}(2)^{\mathrm{k}}
\end{aligned}
$$

Sum, $\mathbf{S}_{\mathbf{n}}$, of a G.S. with $\mathbf{a}=3 ; \mathbf{r}=2 ; \mathbf{n}=k$
$S_{n}=\frac{\mathbf{a}\left(\mathbf{r}^{\mathbf{n}}-1\right)}{\mathbf{r}-\mathbf{1}}$
$S_{k}=\frac{3\left(2^{k}-1\right)}{2-1}$
$=3\left(2^{\mathrm{k}}-1\right)$
$3\left(2^{k}-1\right)=98301$
$\therefore 2^{k}-1=32767$
$\therefore 2^{k}=32768$
\therefore k $=\log _{2} 32768 \quad \ldots$ OR, by inspection
$\therefore k=15<$

Common Errors and Misconceptions

(a) Candidates were correctly able to determine the general term, however, most candidates incorrectly simplified $\mathbf{T}_{\mathbf{n}}=\mathbf{3 . 2} \mathbf{2}^{\mathbf{n - 1}}$ to $\mathbf{T}_{\mathbf{n}}=\mathbf{6}^{\mathbf{n - 1}}$. This did not impact the candidates in Q3.1.1 but did impact the candidates' ability to correctly solve Q3.1.2.
(b) Many candidates did not make the link between \mathbf{n} and \mathbf{k} in the sigma notation in Q3.1.2. The candidates also showed little understanding of how to generate a series from sigma notation to identify the a and the \mathbf{r} values. Further to this, some candidates substituted the calculated information into $\mathbf{T}_{\mathbf{n}}$ rather than $\mathbf{S}_{\mathbf{n}}$.
3.2 A geometric sequence and an arithmetic sequence have the same 35% first term.

- The common ratio of the geometric sequence is $\frac{1}{3}$
- The common difference of the arithmetic sequence is 3
- The sum of 22 terms of the arithmetic sequence is 734 more than the sum to infinity of the geometric sequence.

Calculate the value of the first term.

Memo

3.2 Arithmetic Sequence
$1^{\text {st }}$ term:
$\mathrm{T}_{1}=x$
d $=3$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{22}=\frac{22}{2}[2 x+(22-1)(3)]$
$=11(2 x+63)$
$=22 x+693$

Geometric Sequence

$$
\begin{aligned}
\mathbf{T}_{1} & =x \\
\mathbf{r} & =\frac{1}{3}
\end{aligned}
$$

$$
S_{\infty}=\frac{\mathbf{a}}{\mathbf{1 - r}}
$$

$$
=\frac{x}{1-\frac{1}{3}}
$$

$$
=\frac{3 x}{3-1}
$$

$$
=\frac{3 x}{2}
$$

\mathbf{S}_{22} of the A.S. $=\mathrm{S}_{\infty}$ of the G.S. +734

$$
\therefore 22 x+693=\frac{3 x}{2}+734
$$

$$
(\times 2) \quad \therefore 44 x+1386=3 x+1468
$$

$\therefore 41 x=82$
$\therefore x=2$
i.e. $\mathrm{T}_{1}=2<$

Common Errors and Misconceptions

(c) Most candidates were unable to answer Q3.2 correctly. The interpretation of 'The sum of 22 terms of the arithmetic series is 734 more than the sum to infinity of the geometric sequence' was incorrectly translated to $\mathrm{S}_{22}=734$.

QUESTION 3: Suggestions for Improvement

(a) Teachers should emphasise the differences between the term, sum and sum to infinity formulae in arithmetic and geometric patterns.
(b) The inclusion of word problems in the patterns section is important. Teachers need to emphasise how to take the words of a problem and write it in symbolic form to solve an equation or inequality.
(c) Constant revision of exponential laws to solve equations correctly is pivotal to candidates' success. Teachers need to emphasise this and revise this thoroughly in all grades.

