2023 PROBABILITY

Questions ○ Memos ○ Diagnostic Report

PROBABILITY (30\%): DBE NOVEMBER 2023

QUESTION 10

10.1 A and B are independent events. $P(A)=\frac{1}{3}$ and $P(B)=\frac{3}{4}$ 52\%

Determine:

$$
\begin{aligned}
& \text { 10.1.1 } P(A \text { and } B) \\
& \text { 10.1.2 } P(\text { at least ONE event occurs })
\end{aligned}
$$

Memo

10.1.1 For independent events, A and B :

 $=\frac{1}{4}<$
10.1.2 $\mathbf{P (a t ~ l e a s t ~ O N E ~ e v e n t ~ o c c u r s) ~}$
$=\mathbf{P}(\mathbf{A}$ or $\mathbf{B}) \quad .$. The formula!
$=P(A)+P(B)-P(A$ and $B)$
$=\frac{1}{3}+\frac{3}{4}-\frac{1}{4}$
$=\frac{5}{6}<$

(b) Most candidates who calculated a probability that was greater than 1 did not realise that this could not be correct.

Common Errors and Misconceptions

(a) In Q10.1.2 many candidates did not use the probability rule correctly to answer this problem. The theory of $\mathrm{P}($ at least one $)=1-\mathrm{P}(\mathrm{A}$ and B$)$ was incorrectly used.
10.2 The probability that it will snow on the Drakensberg Mountains in $\mathbf{2 8 \%}$ June is 5%.

- When it snows on the mountains, the probability that the minimum temperature in Central South Africa will drop below $0^{\circ} \mathrm{C}$ is 72%.
- If it does not snow on the mountains, the probability that the minimum temperature in Central South Africa will drop below $0^{\circ} \mathrm{C}$ is 35%.
10.2.1 Represent the given information on a tree diagram. Clearly indicate the probabilities associated with EACH branch.
10.2.2 Calculate the probability that the temperature in Central South Africa will NOT drop below $0^{\circ} \mathrm{C}$ in June 2024.

Memo

Temperature

$$
\text { 10.2.2 } P(A)=P(S \text { and } A)+P\left(S^{\prime} \text { and } A\right)
$$

$$
=5 \% \times 28 \%+95 \% \times 65 \%
$$

$$
=1,4 \%+61,75 \%
$$

$$
=63,15 \%<
$$

Common Errors and Misconceptions

(c) In answering Q10.2.1 many candidates were unable to correctly draw the tree diagram.
10.3 Ten learners stand randomly in a line, one behind the other

15\%

10.3.1 In how many different ways can the ten learners stand in the line?
10.3.2 Calculate the probability that there will be 5 learners between the 2 youngest learners in the line.

Common Errors and Misconceptions

(d) In Q10.3.2 most candidates did not understand
that there were 4 positions for the 5 learners to be seated between the 2 youngest learners.

The most common error was $5!\times 2!$.

Memo

$10!=3628800<$
10.3.2 The youngest learners with 5 learners in between.

$$
\underline{2} \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 1
$$

Think of the two youngest learners and 5 learners in between as one unit. So arrange 4 "groups", i.e. 4!
no. of ways $=4!\times(2 \times 8 \times 7 \times 6 \times 5 \times 4 \times 1)$
$=322560$
\therefore PROBABILITY $=\frac{322560}{3628800} \quad \ldots P(E)=\frac{n(E)}{n(S)}$
$=\frac{4}{45}<$
OR:

OR:
$\mathrm{P}($ either younger learner $)=\frac{2}{10}$
$P\left(\right.$ second younger learner) $=\frac{1}{9}$
Younger learners could be in positions 1 and 7,
or 2 and 8 , or 3 and 9 , or 4 and 10
PROBABILITY $=\frac{2}{10} \times \frac{1}{9} \times 4$
$=\frac{4}{45}<$

QUESTION 10: Suggestions for Improvement

(a) Teaching basic concepts cannot be overlooked. When learners understand the basic concepts well enough, then the more complex concepts are easier to grasp.
(b) It must be stressed that the probability of an event \mathbf{A} lies in the interval $0 \leq P(A) \leq 1$.
(c) Reading for understanding must be a regular practice in the classroom. This should equip learners with the skills to deal with word problems in assessment tasks.
(d) Teachers need to teach both tree diagrams and Venn diagrams thoroughly. These concepts should be examined in school-based assessment tasks throughout the FET phase.
(e) Teach learners the Fundamental Counting Principle in such a way that they will be able to base their answers on their reasoning, rather than on the rule.

