KZN 2024

Maths Subject Advisors Workshop

EUCLIDEAN GEOME Problem Solving

\# BREAK THE 70\% CEILING

LEARN HOW - Remember for a moment
LEARN WHY - Remember for a life time

Presented by
Anne Eadie

MATHS PASS RATE KZN vs NATIONAL

CURRICULUM STRENGTHENING

OUR COMPASS TO IMPROVING LEARNING OUTCOMES

- CURRENT CONTEXT: Where are we now?

VISION: Where do we want to be?

WAY FORWARD: How do we get to the vision?

CURRICULUM STRENGTHENING

THE POLICY LANDSCAPE: CAPS

CURRICULUM STRENGTHENING

PERSISTENT CHALLENGES

Despite improvements, learning outcomes remain lower than many other middle-income countries. Targets remain elusive.

Low learning outcomes in early years contribute to many learners exiting the system without adequate knowledge and skills to succeed in life after school.

Together with other structural factors, this contributes to the youth unemployment crisis in the country.

A Warm-up Example

DBE May 2024: Q10

- In the diagram, COD is the diameter of the circle with centre O .
- EA is a tangent to the circle at F.
- $A O \perp C E$.
- Diameter COD produced intersects the tangent to the circle at E .
- OB produced intersects the tangent to the circle at A .
- CF intersects OB in T.
- CB, BD, OF and FD are drawn.

Prove, with reasons, that:
10.1 TODF is a cyclic quadrilateral
$10.2 \hat{D}_{3}=\hat{T}_{1}$
10.3Δ TFO ||| Δ DFE
10.4 If $\hat{B}_{2}=\hat{E}$, prove that $D B|\mid E A$.
(2)
10.5 Prove that $\mathrm{DO}=\frac{\mathrm{TO} . \mathrm{FE}}{\mathrm{AB}}$
(5) [19]

Solutions

10.1 TÔD $=90^{\circ} \ldots A O \perp C E$
\& DFT $=90^{\circ} \quad \ldots \angle$ in semi $-\odot$
\therefore TODF is a cyclic quad

$$
\begin{gathered}
\text { converse ext } \angle \text { of } \\
\text { cyclic quad }
\end{gathered}
$$

$$
\left[\begin{array}{c}
\text { or: converse opp } \angle^{s} \text { of } \\
\text { cyclic quad }
\end{array}\right]
$$

$10.2 \hat{D}_{3}=\hat{T}_{1}$
(3)

Solutions

10.2 Let $\hat{D}_{3}=x$

$$
\begin{aligned}
& \therefore \hat{\mathrm{T}}_{3}=x \quad \ldots \text { ext } \angle \text { of cyclic quad } \\
& \therefore \hat{\mathrm{T}}_{1}=x \quad \ldots \text { vert opp } \angle^{s}= \\
& \therefore \hat{\mathrm{D}}_{3}=\hat{\mathrm{T}}_{1}<
\end{aligned}
$$

10.3Δ TFO ||| Δ DFE

(5)

Solutions

$10.3 \Delta^{\mathrm{s}}$ TFO and \triangle DFE
(1) $\hat{\mathrm{T}}_{3}=\hat{\mathrm{D}}_{3} \quad \ldots$ proved in 10.2
(2) $\hat{\mathrm{F}}_{4}=\hat{\mathrm{C}}_{2} \quad \ldots$ tan chord theorem

$$
=\hat{F}_{2} \quad \ldots \angle^{s} \text { opp equal sides (radii) }
$$

$\therefore \Delta$ TFO ||| $\Delta \mathrm{DFE}<\ldots$ equiangular Δ^{s}

10.4 If $\hat{B}_{2}=\hat{E}$, prove that $D B|\mid E A$.
(2)

Solutions

$$
\begin{array}{rll}
10.4 & \text { Let } \hat{\mathrm{E}} & =\mathrm{y} \\
& \therefore \hat{\mathrm{~B}}_{2}=\mathrm{y} & \ldots \text { given } \\
\therefore \hat{\mathrm{D}}_{1} & =\mathrm{y} & \ldots \angle^{s} \text { opp equal sides (radii) } \\
\therefore & \hat{\mathrm{D}}_{1}=\hat{\mathrm{E}} & \\
\therefore & \mathrm{DB} \| \mathrm{EA}< & \ldots \text { corresp } \angle^{s}=
\end{array}
$$

10.5 Prove that $D O=\frac{T O . F E}{A B}$

Solutions

10.5 In $\triangle \mathrm{OEA}: \frac{\mathrm{DO}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{AB}} \ldots D B \| E A$ (in 10,4); prop theorem

$$
\begin{equation*}
\therefore \mathrm{DO}=\frac{\mathrm{BO} \cdot \mathrm{ED}}{\mathrm{AB}} \tag{0}
\end{equation*}
$$

Now, in $\Delta^{\mathrm{s}} \mathrm{TFO}$ \& DFE: $\frac{\mathrm{TO}}{\mathrm{ED}}=\frac{\mathrm{FO}}{\mathrm{FE}}\left(=\frac{\mathrm{TF}}{\mathrm{DF}}\right)$

$$
\therefore \text { FO.ED }=\text { TO.FE }
$$

But $\mathrm{FO}=\mathrm{BO}$. . . radii

$$
\therefore \mathrm{BO} . \mathrm{ED}=\mathrm{TO} . \mathrm{FE}
$$

Substitute (2) in (1):

$$
\therefore \mathrm{DO}=\frac{\mathrm{BO} . \mathrm{ED}}{\mathrm{AB}}<
$$

DBE NOV 2023 P2 EUCLIDEAN GEOMETRY (41\%): QUESTIONS \& PERFORMANCE

QUESTION 8 60\%

8.1 In the diagram, O is the centre of the circle. 55\%

Use the diagram alongside to prove the theorem which states that the angle subtended by a chord at the centre of the circle is equal to twice the angle subtended by the same chord at the circumference, that is, prove that $\mathrm{TO} \mathrm{P}=2 \mathrm{~T} \hat{\mathrm{~K}}$.

(5)
8.2 In the diagram, O is the centre 59% of the circle and $A B C D$ is a cyclic quadrilateral. OB and OD are drawn.

If $\hat{\mathrm{O}}_{1}=4 x+100^{\circ}$ and
$\hat{\mathrm{C}}=x+34^{\circ}$, calculate,
giving reasons, the size of x.

8.3 In the diagram, O is the centre 65% of the larger circle. OB is a diameter of the smaller circle. Chord $A B$ of the larger circle intersects the smaller circle at M and B.
8.3.1 Write down the size of OMB.
 Provide a reason.
8.3.2 If $A B=\sqrt{300}$ units and $O M=5$ units, calculate, giving reasons, the length of $O B$.

- Gr 12 Maths Toolkit: DBE Past Papers, p. 43
- TAS Website: www.theanswer.co.za

O Diagnostic Report: Questions/Memos/Comments

- 2023 Exam Reviews

QUESTION 9 44\%

In the diagram, $A B C D$ is a parallelogram with $A B=14$ units.
$A D$ is produced to E such that $A D: D E=4: 3$.
EB intersects DC in F.
$E B=21$ units.

9.1 Calculate, with reasons, the length of FB.
9.2 Prove, with reasons, that $\Delta \mathrm{EDF}||\mid \Delta \mathrm{EAB}$.

60\%
9.3 Calculate, with reasons, the length of FC.

20\%

QUESTION 10

In the diagram, PQRS is a cyclic quadrilateral such that $\mathrm{PQ}=\mathrm{PR}$.
The tangents to the circle through P and R meet $Q S$ produced at A. $R S$ is produced to meet tangent $A P$ at B. $P S$ is produced to meet tangent $A R$ at $C . P R$ and $Q S$ intersect at M.

Prove, giving reasons, that:
$10.1 \quad \hat{S}_{3}=\hat{S}_{4}$
29\%
10.2 SMRC is a cyclic quadrilateral.

16\%
10.3 $R P$ is a tangent to the circle passing through P,
$10 \% \mathrm{~S}$ and A at P.

EUCLIDEAN GEOMETRY (41\%): DBE NOVEMBER 2023

QUESTION 8 60\%

8.1 In the diagram, O is the centre of the circle. 55\%

Use the diagram alongside to prove the theorem which states that the angle subtended by a chord at the centre of the circle is equal to twice the angle subtended by the same chord at the circumference, that is, prove that $\mathrm{TO} \mathrm{P}=2 \mathrm{~T} \hat{\mathrm{~K}} \mathrm{P}$.

MEMOS

8.1 Theorem proof

8.2 In the diagram, O is the centre 59% of the circle and $A B C D$ is a cyclic quadrilateral.
OB and OD are drawn.

If $\hat{\mathrm{O}}_{1}=4 x+100^{\circ}$ and
$\hat{\mathrm{C}}=x+34^{\circ}$, calculate, giving reasons, the size of x.

MEMOS

8.2 $\hat{A}=\frac{1}{2}\left(4 x+100^{\circ}\right) \quad \ldots \angle$ at centre $=2 \times \angle$ at circum
$=2 x+50^{\circ}$
$\widehat{\mathrm{A}}+\widehat{\mathrm{C}}=180^{\circ} \ldots$ opp \angle^{s} of cyclic quad
$\therefore 2 x+50^{\circ}+x+34^{\circ}=180^{\circ}$
$\therefore 3 x+84^{\circ}=180^{\circ}$
$\therefore 3 x=96^{\circ}$
$\therefore x=32^{\circ}<$

Common Errors and Misconceptions

(a) Q8.1 tested bookwork. Some candidates did not show or describe any construction. Some candidates labelled angles inappropriately, e.g. just $\hat{\mathrm{K}}$, instead of $\hat{\mathrm{K}}_{1}$ or $\hat{\mathrm{K}}_{2}$. Some candidates used as reason 'isosceles triangle', instead of 'angles opposite equal sides'.
(b) Some candidates made the following incorrect statements when answering Q8.2:

- DOBC is a cyclic quadrilateral.
- $\hat{A}=\mathbf{2 O}_{1}$
- $\hat{O}_{2}=\frac{1}{2} \hat{C}$
- $\hat{\mathbf{A}}=\hat{\mathbf{C}}$

QUESTION 8 (cont.)

8.3 In the diagram, O is the centre 65% of the larger circle. $O B$ is a diameter of the smaller circle. Chord $A B$ of the larger circle intersects the smaller circle at M and B.

8.3.1 Write down the size of OMB.

Provide a reason.
8.3.2 If $A B=\sqrt{300}$ units and $O M=5$ units, calculate, giving reasons, the length of $O B$.
(4) [16]

MEMOS

8.3.1 $\mathrm{OM} B=90^{\circ} \quad \ldots \quad \angle$ in semi- \odot
8.3.2 $\mathrm{OB}^{2}=\mathrm{OM}^{2}+\mathrm{MB}^{2} \ldots$ Pythag

But $\mathrm{MB}=\frac{1}{2} \mathrm{AB} \quad \ldots$ line from centre \perp to chord

$$
=\frac{1}{2} \sqrt{300} \ldots \text { OR: } 5 \sqrt{3}
$$

$\begin{aligned} \therefore \mathrm{OB}^{2} & =5^{2}+\left(\frac{1}{2} \sqrt{300}\right)^{2} \\ & =25+\left(\frac{1}{4} \times 300\right) \\ & =25+75 \\ & =100\end{aligned} \quad\left(\begin{array}{rl}\mathrm{OR}: \mathrm{OB}^{2} & =5^{2}+(\mathbf{5} \sqrt{\mathbf{3}})^{\mathbf{2}} \\ & =25+(25 \times 3) \\ & =25+75 \\ & =100, \text { etc. }\end{array}\right)$
$\therefore \mathrm{OB}=10$ units
Copyright © The Answer Series

Common Errors and Misconceptions

(c) When answering Q8.3.1 many candidates were able to state that $\mathrm{OMB}=90^{\circ}$. However, they provided the following incorrect reasons for their statement:

- radius perpendicular to chord.
- line from centre perpendicular to chord.
- line from centre to midpoint of chord.
(d) In Q8.3.2 some candidates were unable to provide the correct reason for AM being equal to MB. However, they were able to calculate the length of OB correctly. Some candidates did not use brackets when substituting into the expression for the Theorem of Pythagoras. They wrote $5 \sqrt{3}^{2}$ instead of $(5 \sqrt{3})^{2}$. Consequently, they went on to enter the same into the calculator and obtained an incorrect final answer.

QUESTION 8: Suggestions for Improvement

(a) Learners should be taught that a construction is required in order to prove a theorem. If the construction is not shown, then the proof is regarded as a breakdown and they get no marks.
(b) Teachers must cover the basic work thoroughly. An explanation of the theorem should be accompanied by showing the relationship in a diagram. In addition, learners should be made to prove theorems as part of their informal tasks. A good strategy is to expect learners to write the proof of a theorem as a task the day after the theorem was explained in class.
(c) Teachers are encouraged to use the 'Acceptable Reasons' in the Examination Guidelines when teaching. This should start from as early as Grade 8. Learners should be issued with a copy of the 'Acceptable Reasons'.
(d) Learners should be encouraged to scrutinise the given information and the diagram for clues about which theorems could be used when answering the question.
(e) Learners should be taught that all statements must be accompanied by reasons. It is essential that the parallel lines be mentioned when stating that corresponding angles are equal, alternate angles are equal, the sum of the co-interior angles is 180° or when stating the proportional intercept theorem.

QUESTION 9 44\%

In the diagram, ABCD is a parallelogram with $A B=14$ units.
$A D$ is produced to E such that $A D: D E=4: 3$. EB intersects DC in F. $E B=21$ units.

9.2 Prove, with reasons, that $\Delta E D F||\mid \Delta E A B$.

MEMOS

(1) \hat{E} is common
(2) EFFD $=\mathrm{E} \hat{B} A \quad \ldots$ corresp $\angle^{s} ; D F \| A B$
$\therefore \Delta E D F||\mid \triangle E A B<\ldots \angle \angle \angle$

Common Errors and Misconceptions

(a) In Q9.1 many candidates did not get a mark for the reason, because of only stating: 'proportionality theorem', instead of also stating which lines were parallel in the reason. Some candidates equated ratios between sides which were not actually equal, because they did not choose the sides appropriately, e.g. $\frac{F B}{E B}=\frac{D E}{E A}$.
(b) In Q9.2 many candidates did not label the angles correctly, e.g. \hat{F} and \hat{B} instead of EFFD and EBA. Some candidates incorrectly gave the reason as 'alternate angles' or 'co-interior angles'. Other candidates correctly gave the reason as 'corresponding angles'. However, they did not state 'the lines parallel' and were not awarded a mark as the reason was incomplete.

QUESTION 9 (cont.)

9.3 Calculate, with reasons, the length of FC. 20\%

MEMOS

$$
\begin{aligned}
9.3 \frac{\mathrm{DF}}{\mathrm{AB}} & =\frac{\mathrm{EF}}{\mathrm{~EB}} \ldots \text { similar } \Delta^{s} \\
\therefore \frac{\mathrm{DF}}{14} & =\frac{9}{21} \\
\therefore \mathrm{DF} & =\frac{{ }^{3} g \times 14^{2}}{21_{\wp}} \\
& =6 \text { units }
\end{aligned}
$$

But $D C=A B=14$ units \ldots opp sides of $\|\left.\right|^{m}$
$\therefore F C=14-6=8$ units $<$

Copyright © The Answer Series

Common Errors and Misconceptions

(c) Many candidates incorrectly used the midpoint theorem to answer Q9.3. They should have used the fact that the corresponding sides are in proportion when two triangles are similar. A few candidates incorrectly applied the

Theorem of Pythagoras even though there was no right-angled triangle.
They were not aware of the minimum conditions in which the Theorem of Pythagoras could be used.

(a) Teachers should focus on developing learners' skills to analyse the question and the diagram for clues on which theorems are required to answer the questions correctly.
(b) Clearly explain to learners the difference between the midpoint theorem, the proportionality theorem and similarity so that they will know which of these concepts can be used in a specific situation.
(c) When answering Euclidean Geometry, learners should be discouraged from writing correct statements that are not related to the solution. No marks are awarded for statements that do not lead to solving the problem.
(d) Learners need to be told that success in answering Euclidean Geometry comes from regular practice, starting off with the easy and progressing to the difficult.
(e) Teachers should take some time to discuss the naming of angles, for example, the acceptable methods are \hat{T} or \hat{T}_{1} or ÔTS. Teachers should also clarify when it is acceptable to refer to an angle as \hat{T} and when to refer to it as $\hat{\mathrm{T}}_{1}$.

QUESTION 10 18\%

In the diagram, $P Q R S$ is a cyclic quadrilateral such that $P Q=P R$. The tangents to the circle through P and R meet $Q S$ produced at A. $R S$ is produced to meet tangent $A P$ at B. $P S$ is produced to meet tangent $A R$ at $C . P R$ and $Q S$ intersect at M.

Prove, giving reasons, that:
$10.1 \quad \hat{S}_{3}=\hat{S}_{4}$ 29\%

[^0]
MEMOS

10.

10.1 Let $\hat{S}_{3}=x$
\therefore R̂̂P $=x \quad \ldots$ ext \angle of cyclic quad
$\therefore \hat{\mathrm{R}}_{3}=x \quad \ldots \angle^{s}$ opp $=$ sides
$\therefore \hat{\mathrm{S}}_{4}=x \quad \ldots \angle^{s}$ in the same seg
$\therefore \hat{\mathbf{S}}_{3}=\hat{\mathbf{S}}_{4}<$

Common Errors and Misconceptions

(a) A fair number of candidates made incorrect assumptions when answering Q10.1.
Among them were that: an exterior angle of the cyclic quadrilateral $\left(\hat{S}_{3}\right)=$ the interior opposite angle $\left(\hat{R}_{2}\right), P Q=R Q$ and therefore $A P Q R$ is a kite, $\mathrm{RQ} \| \mathrm{AP}$ and $\hat{\mathrm{M}}_{1}=90^{\circ}$.

QUESTION 10 (cont.)

In the diagram, $P Q R S$ is a cyclic quadrilateral such that $P Q=P R$. The tangents to the circle through P and R meet $Q S$ produced at A. $R S$ is produced to meet tangent $A P$ at B. $P S$ is produced to meet tangent $A R$ at $C . P R$ and $Q S$ intersect at M.

Prove, giving reasons, that:
10.2 SMRC is a cyclic quadrilateral.

16\%

Copyright © The Answer Series

MEMOS

10.

10.2 RQP $=x$
\therefore ARP $=x$

But $\hat{S}_{4}=x$
$\therefore \hat{S}_{4}=A \hat{R} P$
\therefore SMRC is a cyclic quad $<\ldots$ converse ext \angle of c.q.

Common Errors and Misconceptions

(b) Candidates who could not answer Q10.1 correctly could not understand how to start to answer Q10.2. Some candidates used the properties of a cyclic quadrilateral in their attempt to prove that the same quadrilateral is cyclic. Some candidates did not
know the difference between a theorem and
its converse. They omitted the word 'converse' in the reason: 'exterior angle of cyclic quad'.

QUESTION 10 (cont.)

In the diagram, PQRS is a cyclic quadrilateral such that $P Q=P R$. The tangents to the circle through P and R meet QS produced at A. $R S$ is produced to meet tangent AP at B. PS is
 produced to meet tangent $A R$ at C. PR and QS intersect at M.

Prove, giving reasons, that:
10.3 RP is a tangent to the circle passing through P,
$10 \% S$ and A at P.

MEMOS

```
10.3 \(\quad \hat{\mathrm{P}}_{4}=x \quad \ldots\) tan chord theorem
    Let \(\hat{P}_{2}=y\)
    \(\therefore \hat{Q}_{1}=y \quad \ldots L^{s}\) in the same seg
    \(\therefore \quad \hat{Q}_{2}=x-y\)
    \(\therefore \hat{\mathrm{A}}_{2}=\mathrm{y} \quad \ldots\) ext \(\angle\) of \(\triangle Q A P\)
    \(\therefore \hat{P}_{2}=\hat{A}_{2}\)
    \(\therefore R S\) is a tangent to the circle through \(P, S\) and \(A\)
```

[^1]OR:

$$
\hat{P}_{4}=x \quad \ldots \text { tan chord thm }
$$

$\therefore \hat{\mathrm{P}}_{4}=\mathrm{R} \hat{\mathrm{Q}} \mathrm{P}$
$\therefore \mathrm{RQ} \| \mathrm{AP} \quad .$. alt $\angle^{s}=$
Let $\hat{A}_{2}=y$
$\therefore \hat{\mathrm{Q}}_{1}=\mathrm{y} \quad \ldots$ alt $\angle^{s} ; R Q \| A P$
$\therefore \hat{P}_{2}=y \quad \ldots L^{s}$ in the same seg
$\therefore \hat{P}_{2}=\hat{A}_{2}$
$\therefore R S$ is a tangent to the circle through P, S and A
. . . converse tan chord thm

Common Errors and Misconceptions

(c) Very few candidates obtained full marks for $\mathbf{Q 1 0 . 3}$. The main reason for this was that candidates were unable to answer Q10.1 and Q10.2 correctly. Poor naming of angles in the answers often led to candidates themselves getting confused about which angle they were referring to.
(d) Q10.3 required candidates to obtain a proportion from the similar triangles in $\mathbf{Q 1 0 . 2}$, using the proportional intercept theorem in $\triangle R A C$ to establish a second proportion and then to combine the two. Many candidates failed to establish one or the other proportion and therefore could not make the conclusion.

QUESTION 10: Suggestions for Improvement

(a) More time needs to be spent on the teaching of Euclidean Geometry in all grades.

More practice on Grade 11 and 12 Euclidean Geometry will help learners to understand theorems and diagram analysis. They should read the given information carefully without making any
assumptions. The work covered in class must include different activities and all levels of the taxonomy.
(b) Teach learners not to assume any facts in a geometry sketch but to only use what was given and that which was proven already in earlier questions.
(c) Learners need to be made aware that writing correct statements that are irrelevant to the answer in Euclidean Geometry will not earn them any marks in an examination.
(d) Consider teaching the approach of 'angle chasing' where you label one angle as x and then relate other angles to x. In this way, learners should find it easy to identify angles that are equal but moreover, they should find it easier to establish the reasons for the relationships between the angles.

Problem Solving Questions

1.

$A B C D$ is a parallelogram with $A D=A E=E B . D E=9 \mathrm{~cm}$ and $D C=15 \mathrm{~cm}$.

Determine the length of EC.
2.

GHJK is a square with L and M the midpoints of HJ and JK respectively.

Prove that $\mathrm{GL} \perp \mathrm{HM}$.

3.

P, Q, R and S lie on the circumference of circle O.
$P Q=6 \mathrm{~cm}, \mathrm{ST}=4 \mathrm{~cm}$, and the radius of the circle is 5 cm .

Determine the area of quadrilateral PQRS.

Gr 12 Maths National November 2018: Paper 2

2018

EUCLIDEAN GEOMETRY

Give reasons for your statements in QUESTIONS 8, 9 and 10

QUESTION 8

8.1 PON is a diameter of the circle centred at O

TM is a tangent to the circle at M, a point on the circle
R is another point on the circle such that $O R \| P M$.
NR and MN are drawn. Let $\hat{M}_{1}=66^{\circ}$

Calculate, with reasons, the size of EACH of the following angles:
8.1.1 \hat{P}
8.1.2 \hat{M}_{2}
(2)(2)
8.1.3 \hat{N}_{1}
8.1.4 $\hat{\mathrm{O}}_{2}$
(1)(2)
(3)
8.2 In the diagram, $\triangle \mathrm{AGH}$ is drawn. F and C are points on $A G$ and $A H$ respectively such that $A F=20$ units, FG $=15$ units and $C H=21$ units. D is a point on $F C$ such that $A B C D$ is a rectangle with $A B$ also parallel to $G H$. The diagonals of $A B C D$ intersect at M, a point on $A H$.

8.2.1 Explain why FC || GH.
8.2.2 Calculate, with reasons, the length of DM.

QUESTION 9

9.1 In the diagram, JKLM is a cyclic quadrilateral and the circle has centre O.
Prove the theorem which states that
$\hat{J}+\hat{L}=180^{\circ}$.
(5)

9.2 In the diagram, a smaller circle ABTS and a bigger circle BDRT are given. BT is a common chord Straight lines STD and ATR are drawn.
Chords AS and DR are produced to meet in C, a point outside the two circles.
$B S$ and $B D$ are drawn.
$\hat{\mathrm{A}}=x$ and $\hat{\mathrm{R}}_{1}=\mathrm{y}$.

9.2.1 Name, giving a reason, another angle equal to:
(a) x
(b) y
(2)(2)
9.2.2 Prove that SCDB is a cyclic quadrilateral.
9.2.3 It is further given that $\hat{\mathrm{D}}_{2}=30^{\circ}$ and ASTT $=100^{\circ}$ Prove that SD is not a diameter of circle BDS.

QUESTION 10

In the diagram, ABCD is a cyclic quadrilateral such that $A C \perp C B$ and $D C=C B$. $A D$ is produced to M such that $A M \perp M C$.
Let $\hat{\mathrm{B}}=x$.

10.1 Prove that:
10.1.1 MC is a tangent to the circle at C .
10.1.2 $\Delta \mathrm{ACB}||\mid \Delta C M D$
10.2 Hence, or otherwise, prove that:

$$
\begin{align*}
& 10.2 .1 \frac{\mathrm{CM}^{2}}{\mathrm{DC}^{2}}=\frac{\mathrm{AM}}{\mathrm{AB}} \tag{6}\\
& 10.2 .2 \frac{\mathrm{AM}}{\mathrm{AB}}=\sin ^{2} x \tag{2}
\end{align*}
$$

TOTAL: 150

EUCLIDEAN GEOMETRY
THEOREM STATEMENTS \& ACCEPTABLE REASONS

LINES
The adjacent angles on a straight line are supplementary. ι^{s} on a str linep If the adjacent angles are supplementary, the outer arms of these angles form a straight line. adj \angle^{s} supp The adjacent angles in a revolution add up to 360°. \angle^{s} around a pt $\mathrm{OR} \angle^{\mathrm{s}}$ in a rev Vertically opposite angles are equal. vert opp \angle^{s} If $\mathrm{AB} \\| \mathrm{CD}$, then the alternate angles are equal. alt $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$ If $\mathrm{AB} \\| \mathrm{CD}$, then the corresponding angles are equal. corresp $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$ If $\mathrm{AB} \\| \mathrm{CD}$, then the co-interior angles are supplementary. co-int $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$ If the alternate angles between two lines are equal, then the lines are parallel. alt $\angle^{\mathrm{s}}=$ If the corresponding angles between two lines are equal, then the lines are parallel. corresp $\angle^{\mathrm{s}}=$ If the co-interior angles between two lines are supplementary, then the lines are parallel. co-int \angle^{s} supp

\angle sum in $\triangle \mathbf{O R}$ sum of $\angle^{\text {s }}$ in Δ OR int \angle^{s} in Δ
ext \angle of Δ
The exterior angle of a triangle is equal to the sum of the interior opposite angles.
The angles opposite the equal sides in an isosceles triangle are equal.
The sides opposite the equal angles in an isosceles triangle are equal.

In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.
$\angle^{\text {s }}$ opp equal sides
sides opp equal $\angle^{\text {s }}$

Pythagoras OR

 Theorem of Pythagoras
Converse Pythagoras

 OR Converse Theorem of PythagorasIf three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.

SSS

If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.

If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.

If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the

Midpt Theorem length of the third side.

The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.

line through midpt || to

 $2^{\text {nd }}$ sideA line drawn parallel to one side of a triangle divides the other two sides proportionally.

If a line divides two sides of a triangle in the same proportion, then the line is parallel to the third side.
line || one side of Δ OR prop theorem; name || lines

If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.	SSS		
If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.	SAS OR S \angle S		
If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.	AAS OR $\angle \angle S$		
If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.	RHS OR $90^{\circ} \mathrm{HS}$		
The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the length of the third side.	Midpt Theorem		
The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.	line through midpt \|	to $2^{\text {nd }}$ side	
A line drawn parallel to one side of a triangle divides the other two sides proportionally.	line \|	one side of $\Delta \mathrm{OR}$ prop theorem; name \|	lines
If a line divides two sides of a triangle in the same proportion, then the line is parallel to the third side.	line divides two sides of Δ in prop		
If two triangles are equiangular, then the corresponding sides are in proportion (and consequently the triangles are similar).	III $\Delta^{\text {s }}$ OR equiangular $\Delta^{\text {s }}$		
If the corresponding sides of two triangles are proportional, then the triangles are equiangular (and consequently the triangles are similar).	sides of Δ in prop		
If triangles (or parallelograms) are on the same base (or on bases of equal length) and between the same parallel lines, then the triangles (or parallelograms) have equal areas.	same base; same height OR equal bases; equal height		

QUADRILATERALS

The interior angles of a quadrilateral add up to 360°
sum of \angle^{s} in quad

The opposite sides of a parallelogram are parallel.
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.

A diagonal of a kite bisects the opposite angles.

CIRCLES
GROUP I

The tangent to a circle is perpendicular
to the radius/diameter of the circle at the point of contact.
tan \perp radius
$\tan \perp$ diameter

If a line is drawn perpendicular to a radius/diameter at the point where the radius/diameter meets the circle, then the line is a tangent to the circle.

The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord.

The line drawn from the centre of a circle perpendicular to a chord bisects line from centre \perp to chord the chord

The perpendicular bisector of a chord passes through the centre of perp bisector of chord the circle.

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)

> No converse

The angle subtended by the diameter at the circumference of the circle is 90°.

If the angle subtended by a chord at the circumference of the circle is 90°, then the chord is a diameter.
$\angle^{\text {s }}$ in semi circle OR diameter subtends right angle

OR \angle in $1 / 2 \odot$
chord subtends 90° OR
converse $\angle^{\text {s }}$ in semi circle
diag of kite

GROUP II

Angles subtended by a chord of the circle, on the same side of the chord, are equal

If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic.
(This can be used to prove that the
four points are concyclic).

Equal chords subtend equal angles at the circumference of the circle.

Equal chords subtend equal angles at the centre of the circle.

Equal chords in equal circles subtend equal angles at the circumference of the circles.

Equal chords in equal circles subtend equal angles at the centre of the circles.
(A and B indicate the centres of the circles)
L^{s} in the same seg
line subtends equal $\angle^{\text {s }}$ OR
converse \angle^{s} in the same seg
equal chords; equal $\iota^{\text {s }}$
equal chords; equal $\iota^{\text {s }}$
equal circles; equal chords; equal $\angle^{\text {s }}$
equal circles; equal chords; equal $\angle^{\text {s }}$

The highlighted statements are CONVERSE theorem statements.

GROUP III

The opposite angles of a cyclic quadrilateral are supplementary (i.e. x and y are supplementary)

If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.

The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.

opp \angle^{s} quad sup OR
converse opp \angle^{s} of cyclic quad
opp $\angle^{\text {s }}$ of cyclic quad
ext \angle of cyclic quad
ext $\angle=$ int opp \angle
OR
converse ext \angle of cyclic quad

GROUP IV

The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.

If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle. (If $x=b$ or if $y=a$ then the line is a tangent to the circle)

Tans from common pt
OR
Tans from same pt
tan chord theorem
onverse tan chord theorem OR
\angle between line and chord

GRADE 12 MATHS PAST PAPERS TOOLKIT CAPS

 \square supportive, vital documents \square powerful summaries

doR
 BULK ORDERS AT DISCOUNT

Contact our DOE liaisons

Monwa
monwa@theanswerseries.co.za
OR
Slindile
slindile@theanswerseries.co.za

\odot Geom, no tangents

Example 1 (DBE Nov 2018 Q9.2) 44\%

- Gr 12 Maths Toolkit: DBE Past Papers, p. 17
- TAS Gr 12 Euclidean Geometry Video 2

- In the diagram, a smaller circle ABTS and a bigger circle BDRT are given.
- BT is a common chord. Straight lines STD and ATR are drawn.
- Chords AS and DR are produced to meet in C, a point outside the two circles.
- BS and BD are drawn.
$\hat{\mathrm{A}}=x$ and $\hat{\mathrm{R}}_{1}=y$.
1.1 Name, giving a reason, another angle equal to:
(a) x
(b) y
(2)(2)
1.2 Prove that SCDB is a cyclic quadrilateral.
(3)
1.3 It is further given that $\hat{D}_{2}=30^{\circ}$ and ASTT $=100^{\circ}$. Prove that SD is not a diameter of circle BDS.

1.1 Name, giving a reason, another angle equal to:
(a) x
(b) y
(2)
(2)
no circle centres no tangents
no || lines
angles in same segment

opposite angles of a cyclic quad

1.1 Name, giving a reason, another angle equal to:
(a) x
(2)
(b) y
(2)

Solutions

(a) $\hat{\mathrm{B}}_{1}=x \quad \ldots \angle^{s}$ in the same segment
(b) $\hat{\mathrm{B}}_{2}=y \quad \ldots$ exterior \angle of cyclic quad. $B T R D$

1.2 Prove that SCDB is a cyclic quadrilateral.

Can I use my

 answers to 1.1?If this is a cyclic quad, what must be true?
(3)

1.2 Prove that SCDB is a cyclic quadrilateral.
(3)

Solutions

$$
\hat{\mathrm{C}}=180^{\circ}-(x+y) \quad \ldots \text { sum of } \angle^{s} \text { in } \triangle A C R
$$

$\mathrm{DBS}=x+y \quad \ldots$ from 1.1
$\therefore \hat{C}+D \hat{B} S=180^{\circ}$
\therefore SCDB is a cyclic quad
CONVERSE opposite \angle^{s} of cyclic quad.

1.3 It is further given that $\hat{\mathrm{D}}_{2}=30^{\circ}$ and AST $=100^{\circ}$.

Prove that SD is not a diameter of circle BDS.

If $S D$ is a diameter, then $S \hat{B} D=90^{\circ}$ If $S D$ is NOT a diameter, then $S \hat{B} D \neq 90^{\circ}$

Update your diagram with new information, as well as angles found in 1.1 and/or 1.2.
(4)

1.3 It is further given that $\hat{D}_{2}=30^{\circ}$ and AST $=100^{\circ}$.

Prove that SD is not a diameter of circle BDS.
(4)

1.3 It is further given that $\hat{D}_{2}=30^{\circ}$ and AST $=100^{\circ}$.

Prove that $S D$ is not a diameter of circle BDS.
(4)

Solution

$$
\begin{array}{ll}
\text { SCOD }=70^{\circ} & \ldots \text { exterior } \angle \text { of } \triangle S C D \\
\text { SEBD }=110^{\circ} & \ldots \text { opposite } \angle^{s} \text { cyclic quadrilateral }
\end{array}
$$

DS is not a diameter.


```
It does not subtend a right angle.
|}\mathrm{ It does not subtend a right angle.
```


Proportionality

Example 2 (DBE Nov 2018 Q8.2) 59\%

- In the diagram, $\Delta \mathrm{AGH}$ is drawn.
- F and C are points on $A G$ and $A H$ respectively such that $A F=20$ units, $F G=15$ units and $C H=21$ units.
- D is a point on $F C$ such that $A B C D$ is a rectangle with $A B$ also parallel to $G H$.
- The diagonals of $A B C D$ intersect at M, a point on $A H$.
2.1 Explain why FC || GH.
2.2 Calculate, with reasons, the length of DM.

2.1 Explain why FC || GH.

(1)

Solution

2.1 $\mathrm{FC} \| \mathrm{AB}$
\& $A \mathrm{AB} \| \mathrm{GH} \quad$ opposite sides of a rectangle
\therefore FC || GH

Solution

2.2 In $\Delta \mathrm{AGH}:$

$\frac{\mathrm{AC}}{\mathrm{CH}}=\frac{\mathrm{AF}}{\mathrm{FG}} \quad \ldots$ proportion theorem; $F C \| G H$
$\therefore \frac{A C}{21}=\frac{20}{15}$
$\therefore A C=\frac{21 \times 20}{15}=28$ units
$\therefore \quad D B(=A C)=28$ units
diagonals of a rectangle are equal

$$
\begin{aligned}
\therefore \quad \mathrm{DM} & =\frac{1}{2}(28) \quad \ldots \text { diagonals of } a \|^{m} \text { (and } \therefore \text { a rectangle) } \\
& =14 \text { units }<
\end{aligned}
$$

Proportionality

Example 3 (DBE Nov 2020 Q8.2) 52\%

3. In $\triangle A B C, F$ and G are points on sides $A B$ and $A C$ respectively.
D is a point on GC such that $\hat{D}_{1}=\hat{B}$.
(a) If $A F$ is a tangent to the circle passing through points F, G and D, then prove, giving reasons, that FG || BC.
(4)
(b) If it is further given that $\frac{A F}{F B}=\frac{2}{5}$,
$\mathrm{AC}=2 x-6$ and $\mathrm{GC}=x+9$,
then calculate the value of x.
(4)

- TAS Gr 12 Euclidean Geometry Video 6

3. (a) If $A F$ is a tangent to the circle passing through points F, G and D, then prove, giving reasons, that $F G \| B C$.

Solution

3. (a)

$$
\begin{aligned}
& \hat{F}_{1}=\hat{D}_{1} \\
& \text { But } \quad \ldots \text { tan chord theorem } \\
& \hat{D}_{1}=\hat{B} \\
& \therefore \hat{F}_{1}=\hat{B}
\end{aligned}
$$

$\therefore \mathrm{FG} \| \mathrm{BC} \ldots$ corresponding \angle^{s} equal \nearrow

3. (b) If it is further given that $\frac{A F}{F B}=\frac{2}{5}$,

$$
\begin{equation*}
\mathrm{AC}=2 x-6 \text { and } \mathrm{GC}=x+9 \tag{4}
\end{equation*}
$$

then calculate the value of x.

Solution

3. (b) AG $=(2 x-6)-(x+9)$

$$
=x-15
$$

$$
\frac{A G}{G C}=\frac{A F}{F B}
$$ proportion theorem;

$F G|\mid B C$

$$
\begin{aligned}
\therefore \frac{x-15}{x+9} & =\frac{2}{5} \\
\therefore 5 x-75 & =2 x+18 \\
\therefore 3 x & =93 \\
\therefore \boldsymbol{x} & =31<
\end{aligned}
$$

Solution

3. (b) cont.

$$
\begin{aligned}
& \text { OR: } \\
& A B: F B=7: 5 \\
& \frac{A C}{G C}=\frac{A B}{F B} \\
& \text { proportion theorem; } \\
& F G|\mid B C \\
& \therefore \frac{2 x-6}{x+9}=\frac{7}{5} \\
& \therefore 10 x-30=7 x+63 \\
& \therefore 3 x=93 \\
& \therefore x=31<
\end{aligned}
$$

Similarity

Example 4 (DBE Nov 2019 Q8.2) 25\%

- In the diagram, the diagonals of quadrilateral CDEF intersect at T .
- $E F=9$ units, $D C=18$ units, $E T=7$ units, $\mathrm{TC}=10$ units, $\mathrm{FT}=5$ units and $\mathrm{TD}=14$ units.

Prove, with reasons, that:

$$
\begin{equation*}
\text { 4.1 E } \mathrm{F} D=E \hat{C} D \tag{4}
\end{equation*}
$$

4.2 D $\mathrm{F} C=\mathrm{DEE}$

- TAS Gr 12 Euclidean Geometry Video 7
4.1 Prove, with reasons, that E FFD = EĈD
(4)

Solution

4.1 In Δ^{s} FTE and CTD:

$$
\frac{\mathrm{FT}}{\mathrm{CT}}=\frac{\mathrm{TE}}{\mathrm{TD}}=\frac{\mathrm{FE}}{\mathrm{CD}}=\frac{1}{2} \quad \ldots \frac{5}{10}=\frac{7}{14}=\frac{9}{18}
$$

$\therefore \triangle$ FTE $|\mid \triangle C T D$
proportional sides
\therefore TFEE $=T \hat{C} D$
Δ^{s} are equiangular
i.e. $E \hat{F} D=E \hat{C} D<$

4.2 Prove, with reasons, that DFFC $=$ DEEC

Solution
4.2 EF̂D $=$ EĈD $\quad .$. proved in 4.1
\therefore CDEF is a cyclic quadrilateral
converse \angle^{s} in the same segment
\therefore DF̂C $=$ DÊC $<\ldots \angle^{s}$ in the same segment

Mixed

Example 5 (DBE Nov 2018 Q10) 31\%

- In the diagram, ABCD is a cyclic quadrilateral such that $\mathrm{AC} \perp \mathrm{CB}$ and $\mathrm{DC}=\mathrm{CB}$.
- $A D$ is produced to M such that $A M \perp M C$.

Let $\hat{B}=x$.
5.1 Prove that:
48% (a) MC is a tangent to the circle at C . (5)
(b) $\triangle \mathrm{ACB}||\mid \triangle \mathrm{CMD}$
(3)
5.2 Hence, or otherwise, prove that:

18\%
(a) $\frac{\mathrm{CM}^{2}}{D C^{2}}=\frac{A M}{A B}$
(b) $\frac{A M}{A B}=\sin ^{2} x$
(6)
(2)

Solution

(a) We need to prove that $\hat{C}_{2}=\hat{A}_{1}$

We will use
the CONVERSE of the tan chord theorem.
$\hat{D}_{2}=\hat{B} \quad \ldots$ exterior \angle of cyclic quad.

$$
=x
$$

$\therefore \ln \triangle \mathrm{DMC}$:

$$
\hat{\mathrm{C}}_{2}=90^{\circ}-x \quad \ldots \text { sum of } \angle^{s} \text { in } \Delta
$$

In $\triangle \mathrm{ACB}: \quad \hat{\mathrm{A}}_{2}=90^{\circ}-x \quad \ldots$ sum of \angle^{s} in Δ
But $\hat{\mathrm{A}}_{1}=\hat{\mathrm{A}}_{2} \quad \ldots$ equal chords subtend equal angles
$\therefore \hat{A}_{1}=90^{\circ}-x$
$\therefore \hat{\mathrm{C}}_{2}=\hat{\mathrm{A}}_{1}$
\therefore MC is a tangent to the circle at $\mathbf{C}<$
. . . CONVERSE of tan chord theorem

5.1 (b) Prove that $\triangle \mathrm{ACB}||\mid \triangle C M D$
(3)

Solution

(b) In $\Delta^{s} \mathrm{ACB}$ and CMD
(1) $\mathrm{AC} \mathrm{B}=\hat{\mathrm{M}}\left(=90^{\circ}\right) \quad \ldots$ given
(2) $\hat{B}=\hat{D}_{2} \quad \ldots$ exterior \angle of cylic quad.
$\therefore \triangle \mathbf{A C B}||\mid \triangle C M D<\ldots \angle L \angle$

5.2 (a) Prove that $\frac{C M^{2}}{D C^{2}}=\frac{A M}{A B}$

Solution

(a) $\frac{\mathrm{CM}}{\mathrm{DC}}=\frac{\mathrm{AC}}{\mathrm{AB}}$
(1) $\ldots \triangle A C B|\mid \triangle C M D$

But, in $\Delta^{\mathrm{s}} \mathrm{CMD}$ and AMC
(1) $\hat{M}\left(=90^{\circ}\right)$ is common
(2) $\hat{\mathrm{C}}_{2}=\hat{\mathrm{A}}_{1} \quad \ldots$ proved in 5.1(a)
$\therefore \Delta \mathrm{CMD}\left|\mid \triangle \mathrm{AMC} \quad \ldots\right.$ equiangular Δ^{s}

$$
\begin{aligned}
\therefore \frac{C M}{D C} & =\frac{A M}{A C} \ldots 2 \\
\therefore \frac{C M}{D C} \times \frac{C M}{D C} & =\frac{A C}{A B} \times \frac{A M}{A C} \quad \ldots \text { see } 1 \text { and } 2 \\
\therefore \frac{\mathrm{CM}^{2}}{\mathrm{DC}^{2}} & =\frac{\mathrm{AM}}{\mathrm{AB}}<
\end{aligned}
$$

5.2 (b) Prove that $\frac{A M}{A B}=\sin ^{2} x$
(2)

Solution

(b) $\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{CM}^{2}}{\mathrm{DC}^{2}} \quad \ldots$ proved in $5.2(a)$

But, in $\triangle \mathrm{DMC}: \frac{\mathrm{CM}}{\mathrm{DC}}=\sin x$
$\frac{A M}{A B}=\sin ^{2} x<$

Example 6 (DBE Nov 2020 Q10) 43\%

- In the diagram, a circle passes through D, B and E.
- Diameter ED of the circle is produced to C and $A C$ is a tangent to the circle at B.
- M is a point on $D E$ such that $A M \perp D E$.
- AM and chord BE intersect at F.
6.1 Prove, giving reasons, that:

55\%
(a) FBDM is a cyclic quadrilateral
(b) $\hat{\mathrm{B}}_{3}=\hat{\mathrm{F}}_{1}$
(c) $\triangle \mathrm{CDB}||\mid \triangle \mathrm{CBE}$
6.2 If it is further given that $C D=2$ units and $D E=6$ units, 26% calculate the length of:
(a) BC
(b) DB
(3)(4)

- Gr 12 Maths Toolkit: DBE Past Papers, p. 27
- TAS Gr 12 Euclidean Geometry Video 8

6.1 (a) Prove, giving reasons, that FBDM is a cyclic quadrilateral

Solution

6.1 (a) $\hat{M}_{2}=90^{\circ}$
\& $\hat{\mathrm{B}}_{2}=90^{\circ} \quad \ldots \angle$ in semi $-\odot$
$\therefore \hat{M}_{2}=\hat{B}_{2}$
\therefore FBDM is a cyclic quad.
CONVERSE of ext. \angle of cyclic quad.
(3)

6.1 (b) Prove, giving reasons, that $\hat{B}_{3}=\hat{F}_{1}$

Solution

6.1 (b) $\hat{B}_{3}=\hat{D}_{2} \quad \ldots$ tan chord theorem

$$
=\hat{\mathbf{F}}_{1}<\ldots \text { ext. } \angle \text { of c.q. } \operatorname{FBDM}(6.1(a))
$$

(4)

6.1 (c) Prove, giving reasons, that $\triangle C D B||\mid \triangle C B E$
(3)

Solution

6.2 (a) $\therefore \triangle C D B|\mid \triangle C B E \quad .$. from 6.1 (c)

$$
\begin{aligned}
& \therefore \frac{C D}{B C}=\frac{B C}{C E}\left(=\frac{D B}{B E}\right) \ldots \text { equiangular } \Delta^{s} \\
& \therefore \frac{2}{B C}=\frac{B C}{2+6} \\
& \therefore B C^{2}=16 \\
& \therefore B C=4 \text { units }<
\end{aligned}
$$

6.2 (b) If it is further given that $C D=2$ units and $D E=6$ units, calculate the length of $D B$

Solution

6.2 (b) $\frac{C D}{B C}\left(=\frac{B C}{C E}\right)=\frac{D B}{B E}$
$\frac{\mathrm{DB}}{\mathrm{BE}}=\frac{\mathrm{CD}}{\mathrm{BC}}=\frac{2}{4}=\frac{1}{2}$
$\therefore B E=2 D B$
Let $\mathrm{DB}=x$, then $\mathrm{BE}=2 x$
In \triangle DBE: $\quad \hat{\mathbf{B}}_{2}=90^{\circ} \quad \ldots \angle$ in semi- \odot
$\therefore \mathrm{DB}^{2}+\mathrm{BE}^{2}=\mathrm{DE}^{2} \quad \ldots$ Theorem of Pythagoras
$\therefore x^{2}+(2 x)^{2}=6^{2}$
$\therefore x^{2}+4 x^{2}=36$
$\therefore 5 x^{2}=36$
$\therefore x^{2}=\frac{36}{5}$
$\therefore x \approx 2,68$ units

The Major Issues

Language

Knowledge

Logic

and then

Strategies

Theory without practice is empty

Practice without theory is blind

Philosopher, Immanuel Kant (18 ${ }^{\text {th }}$ century philosopher)

The Answer Series
 CONTENT FRAMEWORK: Gr 8-12

- LINES
- TRIANGLES
- QUADRILATERALS
- CIRCLES (Gr11)

Gr 12

- THEOREM OF PYTHAGORAS (Gr 8)
- SIMILAR $\Delta^{\mathbf{s}}$ (Gr 9)
- MIIDPOINT THEOREM (Gr 10)

- THE PROPORTION THEOREM (Gr 12)

Ratio Proportion Area

KZN Grade 122024 ATP

TERM 2				
NUMBER OF DAYS	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$	TOPIC	CURRICULUM STATEMENT
$\begin{gathered} 03-10 / 04 \\ (6 \text { days }) \end{gathered}$			EUCLIDEAN GEOMETRY	1. Revise earlier work on the necessary and sufficient conditions for polygons to be similar. 2. Prove (accepting results established in earlier grades) that a line drawn parallel to one side of a triangle divides the other two sides proportionally (and the Midpoint Theorem as a special case of this theorem). 3. Solve proportionality problems and prove riders.
$\begin{gathered} 11-18 / 04 \\ \text { (6 days) } \end{gathered}$			EUCLIDEAN GEOMETRY	4. Prove (accepting results established in earlier grades): 4.1 that equiangular triangles are similar; 4.2 that triangles with sides in proportion are similar; and 4.3 the Pythagorean Theorem by similar triangles. 5. Solve similarity problems and prove riders.

GR 10-12 EXEMPLAR GEOMETRY

GRADE 10: QUESTIONS

1. $P Q R S$ is a kite such that the diagonals intersect in O. $O S=2 \mathrm{~cm}$ and $O \hat{P} S=20^{\circ}$.

1.1 Write down the length of $O Q$.
(2)
1.2 Write down the size of PÔQ.
(2)
1.3 Write down the size of QPS.
2. In the diagram, $B C D E$ and $A O D E$ are parallelograms.

2.1 Prove that $\mathrm{OF} \| \mathrm{AB}$.
2.2 Prove that $A B O E$ is a parallelogram.
(4)
2.3 Prove that $\triangle \mathrm{ABO} \equiv \triangle \mathrm{EOD}$.
(5) [13]

GRADE 10: MEMOS		
1.1	$\mathrm{OQ}=2 \mathrm{~cm}<\ldots \begin{gathered}\text { the longer diagonal of a kite } \\ \text { bisects the shorter diagonal }\end{gathered}$	
1.2	$\mathrm{POQQ}=90^{\circ}<\ldots \quad \begin{aligned} & \text { the diagonals of a kite } \\ & \text { intersect at right angles } \end{aligned}$	
1.3	$\begin{array}{rlr} \text { QPO } & =20^{\circ} \quad \cdots \quad \begin{array}{c} \text { the longer diagonal of a } \\ \text { kite bisects the (opposite) } \end{array} \\ \therefore \text { QPSS } & =40^{\circ}< & \text { angles of a kite } \end{array}$	
2.	Hint: Use highlighters to mark the various $\\|^{\mathrm{ms}}$ and Δ^{s}	
2.1	In \triangle DBA:	

AE || OD
. opp. sides of $\|^{m} A O D E$
$\therefore \mathrm{AE} \| \mathrm{BO}$
and $\mathrm{OF} \| \mathrm{AB}$... proven above
$\therefore \mathrm{OE} \| \mathrm{AB}$
$\therefore A B O E$ is a $\|^{m}$
both pairs of opposite sides are parallel

OR: $\operatorname{In} \|^{m}$ AODE: $A E=$ and $\| O D \ldots \begin{gathered}\text { opp. sides } \\ \text { of } \|^{m}\end{gathered}$
But $O D=B O$ \qquad O proved midpt of $B D$ of $B D$ in 2.1
$\therefore A E=$ and $|\mid B O$
\therefore ABOE is a $\|^{m}<\ldots$. 1 pr of opp. sides = and \|
2.3 In $\Delta^{\mathrm{s}} \mathrm{ABO}$ and EOD

1) $\mathrm{AB}=\mathrm{EO} \quad$... opposite sides of $\|^{m} A B O E$
2) $B O=O D$
. . proved in 2.1
3) $A O=E D$
... opposite sides of $\|^{m} A O D E$
$\therefore \triangle \mathrm{ABO} \equiv \triangle \mathrm{EOD}<$
SSS

GRADE 11: QUESTIONS

1.1 Complete the statement so that it is valid:

The line drawn from the centre of the circle perpendicular to the chord. .
1.2 In the diagram, O is the centre of the circle.

The diameter DE is perpendicular to the chord $P Q$ at C.
$D E=20 \mathrm{~cm}$ and $C E=2 \mathrm{~cm}$.

Calculate the length of the following with reasons:
1.2.1 OC
1.2.2 PQ
(2)(4) [7]
2.1 In the diagram, O is the centre of the circle and A, B and D are points on the circle.

Use Euclidean geometry methods to prove the theorem which states that $A O \hat{B}=2 A \hat{D} B$.
2.2 In the diagram, M is the centre of the circle.
A, B, C, K and T lie on the circle.
AT produced and CK produced meet in N .
Also NA $=N C$ and $\hat{B}=38^{\circ}$.

2.2.1 Calculate, with reasons, the size of the following angles:
(a) $K \hat{M} A$
(b) $\hat{\mathrm{T}}_{2}$
(c) $\hat{\mathrm{C}}$
(d) $\hat{\mathrm{K}}_{4}$
(2)(2)
(2)(2)
2.2.2 Show that NK = NT.
2.2.3 Prove that AMKN is a cyclic quadrilateral.
3.1 Complete the following statement so that it is valid:
The angle between a chord and a tangent at the point of contact is . . .
3.2 In the diagram, EA is a tangent to circle $A B C D$ at A.
$A C$ is a tangent to circle CDFG at C.
$C E$ and $A G$ intersect at D.

If $\hat{A}_{1}=x$ and $\hat{E}_{1}=y$, prove the following with reasons:
3.2.1 $\quad B C G|\mid A E$
3.2.2 $A E$ is a tangent to circle FED
(5)
3.2.3 $A B=A C$
(4) [15]

GRADE 11: MEMOS

1.1 ... bisects the chord <
1.2.1 $\mathrm{OE}=\mathrm{OD}=\frac{1}{2}(20)=10 \mathrm{~cm} \quad=\frac{1}{2}$ radiameter $\mathrm{OC}=\mathbf{8} \mathbf{c m}<\ldots C E=2 \mathrm{~cm}$
1.2.2 $\ln \triangle \mathrm{OPC}$:
$\mathrm{PC}^{2}=\mathrm{OP}^{2}-\mathrm{OC}^{2}$
Pythagoras
$=10^{2}-8^{2}$
= 36
$\therefore \mathrm{PC}=6 \mathrm{~cm}$

$P Q=12 \mathrm{~cm}<$. . line from centre \perp chord
2.1 Construction: Join DO and produce it to C

Proof:
Let $\hat{D}_{1}=x$
then $\hat{A}=x \quad \ldots \quad \begin{array}{lll}\text { radii; } \\ \angle^{\text {s }} \text { opp }=\text { side }\end{array}$

$$
\therefore \hat{\mathrm{O}}_{1}=2 x
$$

$$
\ldots \text { ext. } \angle \text { of } \triangle D A O
$$

Similarly: Let $\hat{\mathrm{D}}_{2}=\mathrm{y}$

$$
\text { then, } \hat{\mathrm{O}}_{2}=2 \mathrm{y}
$$

\therefore AÔB $=2 x+2 y$
$=2(x+y)$
$=2 A \hat{D}$ <
2.2

2.2.1

(b) $\hat{\mathrm{T}}_{2}=38^{\circ}<\ldots$ ext. \angle of cyclic quad. BKTA
(c) $\hat{C}=38^{\circ}<\ldots L^{s}$ in the same segment or, ext. \angle of cyclic quad. CKTA
(d) NÂC $=38^{\circ} \ldots \angle^{s}$ opp $=$ sides

$$
\therefore \hat{\mathrm{K}}_{4}=38^{\circ}<\ldots \text { ext. } \angle \text { of c.q. CKTA }
$$

2.2.2 $\operatorname{In} \Delta \mathrm{NKT}: \hat{\mathrm{K}}_{4}=\hat{\mathrm{T}}_{2} \quad \ldots$ both $=38^{\circ}$ in 2.2.1
$\therefore \mathbf{N K}=\mathbf{N T}<\ldots$ sides opp equal \angle^{s}
2.2.3 $\mathrm{KM} \mathrm{M}=2\left(38^{\circ}\right) \quad$... see 2.2.1 (a)
\& $\hat{\mathrm{N}}=180^{\circ}-2\left(38^{\circ}\right) \quad \ldots$ sum of \angle^{s} in $\triangle N K T$
(see 2.2.2)
$\therefore K \hat{M A}+\hat{\mathrm{N}}=180^{\circ}$

\therefore AMKN is a cyclic quadrilateral <

. . opposite \angle^{s} supplementary
$3.1 \quad$... equal to the angle subtended by the chord in the alternate segment. <
3.2

$\hat{A}_{1}=x$
. . given
$\therefore \hat{\mathrm{C}}_{2}=x$
. . . tan chord theorem
$\therefore \hat{\mathrm{G}}_{2}=x$
. . tan chord theorem
$\therefore \hat{\mathrm{A}}_{1}=$ (alternate) $\hat{\mathrm{G}}_{2}$
BCG || AE < \ldots (alternate \angle^{s} equal)
$=\hat{\mathrm{E}}_{1}(=\mathrm{y}) \quad \ldots$ alternate $\angle^{s} ; B C G \| A E$
AE is a tangent to \odot FED <
. . . converse of tan chord theorem
$\hat{C}_{1}=C A \hat{E}$
$=\hat{B}$
.. tan chord theorem
. $A B=A C<$
. . . sides opposite equal \angle^{s}

GRADE 12: QUESTIONS

1.1 Complete the following statement:

The angle between the tangent and the chord at the point of contact is equal to . .
1.2 In the diagram, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are points on the circumference of the circle such that $A E \| B C$. $B E$ and $C D$ produced meet in F. GBH is a tangent to the circle at B . $\hat{\mathrm{B}}_{1}=68^{\circ}$ and $\hat{\mathrm{F}}=20^{\circ}$.

Determine the size of each of the following:
1.2.1 E_{1}
(2)
1.2.2 \hat{B}_{3}
(1)
1.2.3 \hat{D}_{1}
1.2.4 $\quad \hat{E}_{2}$
(1)
1.2.5 C
2. In the diagram, M is the centre of the circle and diameter $A B$ is produced to C. ME is drawn perpendicular to $A C$ such that CDE is a tangent to the circle at D . ME and chord $A D$ intersect at F. $M B=2 B C$.

2.1 If $\hat{\mathrm{D}}_{4}=x$, write down, with reasons, TWO other angles each equal to x
2.2 Prove that CM is a tangent at M to the circle passing through M, E and D.
2.3 Prove that FMBD is a cyclic quadrilateral.
2.4 Prove that $D C^{2}=5 B C^{2}$.
2.5 Prove that $\triangle \mathrm{DBC}||\mid \triangle \mathrm{DFM}$.
(4)
2.6 Hence, determine the value of $\frac{D M}{F M}$.
3.1 In the diagram, points D and E lie on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $D E \| B C$. Use Euclidean Geometry methods to prove the theorem which states

that $\frac{A D}{D B}=\frac{A E}{E C}$.
(6)

In the diagram, $A D E$ is a triangle having $B C \| E D$ and $A E \| G F$. It is also given that $A B: B E=1: 3$, $A C=3$ units, $E F=6$ units, $F D=3$ units and $\mathrm{CG}=x$ units.

Calculate, giving reasons:
3.2.1 the length of $C D$
3.2.2 the value of x
3.2.3 the length of $B C$
3.2.4 the value of $\frac{\text { area } \triangle A B C}{\text { area } \triangle G F D}$

GRADE 12: MEMOS

1.1 . . . the angle subtended by the chord in the alternate segment.
1.2.1 $\quad \hat{E}_{1}=\hat{B}_{1}$. tan chord theorem
$=68^{\circ}<$
1.2.2
$\hat{\mathrm{B}}_{3}=\hat{\mathrm{E}}_{1}$
... alt. $\angle^{s} ; A E \| B C$
$=68^{\circ}<$
1.2.3 $\quad \hat{D}_{1}=\hat{B}_{3} \quad \ldots$ ext. \angle of cyclic quad. $=68^{\circ}<$

$$
\hat{\mathrm{E}}_{2}=\hat{\mathrm{D}}_{1}+20^{\circ} \quad \ldots \text { ext. } \angle \text { of } \Delta
$$

$$
=88^{\circ}<
$$

$\hat{\mathrm{C}}=180^{\circ}-\hat{\mathrm{E}}_{2} \quad \ldots$ opp. \angle^{s} of cyclic quad $=92^{\circ}<$
2.1 $\hat{\mathrm{A}}=x \quad \ldots$ tan chord theorem
$\hat{\mathrm{D}}_{2}=x \quad \ldots \angle^{s}$ opp. equal sides
2.2

\& MDE $=90^{\circ} \ldots$ radius $M D \perp$ tangent $C D E$

$$
\begin{aligned}
& \therefore \hat{E}=2 x \quad \ldots \text { sum of } \angle^{s} \text { in } \triangle M E D \\
& \hat{M}_{1}=\hat{E}
\end{aligned}
$$

$C M$ is a tangent at M to $\odot M E D<$
converse tan chord theorem
2.3 $\mathrm{A} \hat{\mathrm{D}} \mathrm{B}=90^{\circ} \quad \ldots \quad \angle$ in semi- \odot

$$
\& \hat{\mathrm{M}}_{3}=90^{\circ} \quad \ldots M E \perp A C
$$

$$
\hat{M}_{3}=A \hat{D} B
$$

FMBD is a cyclic quad $<\ldots$ converse ext. \angle of cyclic quad
2.4 Let $B C=a$; then $M B=2 a$

$$
\mathrm{MD}=2 \mathrm{a} \quad \ldots \text { radii }
$$

In \triangle MDC: $\mathrm{MDC}=90^{\circ} \quad \ldots$ radius \perp tangent $\therefore D C^{2}=M C^{2}-M D^{2} \quad \ldots$ theorem of Pythagoras
$=(3 a)^{2}-(2 a)^{2}$
$=9 a^{2}-4 a^{2}$
$=5 a^{2}$
$=5 B C^{2}<$
2.5 In $\Delta^{\mathrm{s}} \mathrm{DBC}$ and DFM
(1) $\hat{\mathrm{B}}_{1}=\hat{\mathrm{F}}_{2} \quad \ldots$ ext \angle of c.q. $F M B D$
(2) $\hat{\mathrm{D}}_{4}=\hat{\mathrm{D}}_{2} \quad \ldots$ both $=x$
$\Delta \mathrm{DBC}\left|\left|\mid \triangle \mathrm{DFM}<\ldots\right.\right.$ equiangular Δ^{s}

$$
\begin{array}{rlll}
\therefore \frac{\mathrm{DM}}{\mathrm{FM}} & =\frac{\mathrm{DC}}{\mathrm{BC}} & \ldots & \left\|\| \Delta^{s}\right. \\
& =\frac{\sqrt{5} \mathrm{BC}}{\mathrm{BC}} \ldots \text { see } 2.4 \\
& =\sqrt{5}<
\end{array}
$$

3.1 Construction:

Join DC and EB
and heights h and h^{\prime}

$$
\begin{aligned}
& \text { Proof: } \\
& \frac{\text { area of } \triangle \mathrm{ADE}}{\text { area of } \triangle \mathrm{DBE}}=\frac{\sqrt{\frac{1}{2}} \mathrm{AD} \cdot h^{\prime}}{\frac{1}{2} \mathrm{DB} \cdot h^{\prime}}
\end{aligned}
$$

$$
=\frac{\mathrm{AD}}{\mathrm{DB}} \quad \ldots \text { equal heights }
$$

$\& \frac{\text { area of } \triangle \mathrm{ADE}}{\text { area of } \triangle \mathrm{EDC}}=\frac{\frac{1}{2} \mathrm{AE} \cdot h^{\prime}}{\frac{1}{2} \mathrm{EC} \cdot h^{\prime}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad \ldots$ equal heights
But, area of $\triangle D B E=$ area of $\triangle E D C$
same base DE \& betw. same || lines, \therefore area of $\triangle A D E=$ area of $\triangle A D E$ i.e. same height $\overline{\text { area of } \triangle \mathrm{DBE}}=\frac{\text { area of } \triangle \mathrm{EDC}}{}$

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

3.2.1 Let $A B=p$; then $B E=3 p$

In $\triangle A E D: \frac{C D}{3}=\frac{3 p}{p^{\prime}} \quad \ldots$ proportion thm; $B C \| E D$
$\times 3) \quad \therefore C D=9$ units $<$

3.2.2 $\mathrm{CG}=x$; so $\mathrm{GD}=9-x$

In $\triangle \mathrm{DAE}: \frac{9-x}{x+3}=\frac{3}{6} \ldots$ prop. thm. ; $A E \| G F$

$$
\begin{aligned}
54-6 x & =3 x+9 \\
\therefore-9 x & =-45 \\
\therefore x & =5<
\end{aligned}
$$

3.2.3 $\ln \Delta^{\mathrm{s}} \mathrm{ABC}$ and AED
(1) \hat{A} is common
(2) $\mathrm{A} \hat{\mathrm{B}} \mathrm{C}=\hat{\mathrm{E}} \quad \ldots$ corr. $\angle^{s} ; B C \| E D$
$\therefore \triangle \mathrm{ABC}\left|\mid \triangle \mathrm{AED} \quad \ldots\right.$ equiangular Δ^{s}

$$
\begin{aligned}
\therefore \frac{B C}{E D} & =\frac{A B}{A E} \ldots \| \mid \Delta^{s} \\
\therefore \frac{B C}{9} & =\frac{p}{4 p} \\
\times 9) \quad \therefore B C & =\frac{9}{4} \text { units }<
\end{aligned}
$$

3.2.4 $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle G F D}=\frac{\frac{1}{2} A C \cdot B C \sin A C B}{\frac{1}{2} D G \cdot D F \sin \hat{D}}$

$$
\begin{aligned}
& =\frac{\frac{1}{2} \cdot \beta \cdot \frac{9}{4} \cdot \sin \hat{D}}{\frac{1}{2} \cdot 4 \cdot \not ̋ \cdot \sin \hat{D}} \ldots \text { corr. } \angle^{s} ; B C \| E D \\
& =\frac{\frac{9}{4}}{4} \\
& =\frac{9}{16}<
\end{aligned}
$$

OR: $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle A E D}=\frac{\frac{1}{2} \cdot p \cdot \not z \cdot \sin \hat{A}}{\frac{1}{2} \cdot 4 p \cdot 12 \cdot \sin \hat{A}}=\frac{1}{16}$
area of $\triangle A B C=\frac{1}{16}$ area of $\triangle A E D \quad \ldots$ (1)

\therefore area of \triangle GFD $=\frac{1}{9}$ area of \triangle AED \ldots (2
(1) (2) $\therefore \frac{\text { area of } \triangle A B C}{\text { area of } \triangle G F D}=\frac{\frac{1}{16} \text { area of } \triangle A A E D}{\frac{1}{9} \text { area of } \triangle A A E D}$

$$
=\frac{9}{16}<
$$

$$
\begin{aligned}
& \hat{\mathrm{M}}_{1}=\hat{\mathrm{A}}+\hat{\mathrm{D}}_{2} \quad \ldots \text { ext. } \angle \text { of } \Delta \\
& =2 x \\
& \hat{\mathrm{M}}_{2}=90^{\circ}-2 x \quad \ldots M E \perp A C
\end{aligned}
$$

LINES

2 Situations

TRIANGLES

Sum of Interior $\angle \mathrm{s}$	Exterior \angle of Δ	NB: Vocabulary first, then facts
* Isosceles Δ	Equilateral Δ	Right $-\angle^{\mathrm{d}} \Delta$
	$-{ }^{*}$ Theorem of Pythagoras	

Area of a Δ and related facts

* Similar Δ^{s}

Congruent Δ^{s}

These involve converse theorems

QUADRILATERALS

Observe the progression below as we discuss further definitions . . .

1. a parallelogram need to become a rectangle?
2. a parallelogram need to become a rhombus?
3. a rectangle need to become a square?
4. a rhombus need to become a square?
5. And, which property(s) does a parallelogram need to become a square?

A Trapezium

- Can you derive a formula for the area of a trapezium?

$$
\begin{aligned}
\text { The Area } & =\Delta 1+\Delta 2 \\
& =\frac{1}{2} \mathrm{ah}+\frac{1}{2} \mathrm{bh} \\
& =\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{a}+\mathbf{b}) \cdot \mathbf{h}
\end{aligned}
$$

\therefore The area of a trapezium:

Half the sum of the || sides \times the distance between them.

A Kite

Can you derive a formula for the area of a kite?

Given diagonals a and b...
Area $=2 \Delta^{s}=2\left(\frac{1}{2} b \cdot \frac{a}{2}\right)=\frac{a b}{2} \quad \ldots \frac{\text { the product of the diagonals }}{2}$
\therefore The area of a kite: 'Half the product of the diagonals'

Could this formula apply to a rhombus?

And to a square?

SUMMARY: AREAS

A Parallelogram

A Trapezium

Area $=\Delta 1+\Delta 2$
$=\frac{1}{2} a h+\frac{1}{2} b h$
$=\frac{1}{2}(a+b) \cdot h$
'Half the sum of the || sides \times the distance between them.'

Area $=$ base \times height

A Rectangle

Area $=\boldsymbol{e} \times \mathbf{b}$

The Square

$$
\text { Area }=s^{2}
$$

Given diagonals a and b
Area $=2 \Delta^{s}=2\left(\frac{1}{2} b \cdot \frac{a}{2}\right)=\frac{\mathbf{a b}}{2}$
'Half the product of the diagonals'

QUADRILATERALS - definitions, areas \& properties

All you need to know

'Any' Quadrilateral

Sum of the $\angle{ }^{\mathrm{s}}$ of any quadrilateral $=360^{\circ}$
$\left.\left.\begin{array}{l}\text { Sum of the interior angles } \\ =(a+b+c)+(d+e+f) \\ =2 \times 180^{\circ} \\ =360^{\circ}\end{array}\right]\left(2 \Delta^{s}\right)\right)$

The arrows indicate

DEFINITION:

Quadrilateral with 1 pair of opposite sides ||

$$
\begin{aligned}
\text { Area } & =\Delta 1+\Delta 2 \\
& =\frac{1}{2} a h+\frac{1}{2} b h \\
& =\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{a}+\mathbf{b}) \cdot \mathbf{h}
\end{aligned}
$$

'Half the sum of the $\|$ sides x the distance between them.

A Parallelogram

DEFINITION:
Quadrilateral with 2 pairs opposite sides ||

$\left\|\|^{m} A B C D=A B C Q+\triangle Q C D\right.$ rect. $\mathrm{PBCQ}=\mathrm{ABCQ}+\triangle \mathrm{PBA}$ where $\triangle \mathrm{QCD} \equiv \triangle \mathrm{PBA} \ldots$ RHS $/ 90^{\circ} H S$

$$
\therefore \|^{m} \mathrm{ABCD}=\text { rect. PBCQ (in area) }
$$

$$
=B C \times Q C
$$

various 'pathways from 'any' quadrilateral to the square (the 'ultimate quadrilateral'). These pathways, which combine logic and fact, are essential to use when proving specific types of quadrilaterals.
See how the properties accumulate as we move from left to right, i.e. the first quad. has no special properties and each successive quadrilateral has all preceding properties.

THE DIAGONALS

- cut perpendicularly
- one diagonal bisects the other diagonal, the opposite angles and the area of the kite
Copyright © The Answer

A Rectangle

Area $=\mathbf{s}^{\mathbf{2}}$

Properties: It's all been said 'before'!
Since a square is a rectangle, a rhombus, a parallelogram, a kite, . . . ALL the properties of these quadrilaterals apply.

Area

$=\frac{1}{2}$ product of diagonals (as for a kite)
or
$=$ base \times height (as for a parallelogram)
angles

Quadrilaterals play a prominent role in both Euclidean \& Analytical Geometry right through to Grade 12!

An Assignment: Quadrilaterals Theorems and Proofs

\square Theorems and Proofs

The following section deals with the properties of a parallelogram. We firstly prove all the properties. Secondly, we prove that a quadrilateral with any of these properties has to be a parallelogram.

Geometry is an exercise in LOGIC. Initially, we observe, we measure, we record . . . But, finally . . . We decide on how to define something and then we prove various properties logically, using the definition.

THE DEFINITION OF A PARALLELOGRAM
A parallelogram is a quadrilateral with 2 PAIRS OF OPPOSITE SIDES PARALLEL.

Beyond the DEFINITION of a parallelogram, we noticed other facts/properties regarding the lines, angles and diagonals of a parallelogram. The statement and proofs of these properties make up our first three THEOREMS!

The PROPERTIES of a parallelogram

All the properties are to be deduced from the definition!

Theorem 1: The opposite angles of a parallelogram are equal.
Theorem 2: The opposite sides of a parallelogram are equal.
Theorem 3: The diagonals of a parallelogram bisect one another.

The CONVERSE theorems

Given a property, prove the quadrilateral is a parallelogram, i.e. prove both pairs of opposite sides are parallel.
There are four converse statements, each claiming that IF a quadrilateral has a particular property, it must be a parallelogram.

In these cases, we work towards the definition!

Theorem 4: If a QUADRILATERAL has 2 pairs of opposite angles equal, then the quadrilateral is a parallelogram.
Theorem 5: If a QUADRILATERAL has 2 pairs of opposite sides equal, then the quadrilateral is a parallelogram.
Theorem 6: If a QUADRILATERAL has 1 pair of opposite sides equal and parallel, then the quadrilateral is a parallelogram.
Theorem 7: If a QUADRILATERAL has diagonals which bisect one another, then the quadrilateral is a parallelogram.

The Theorem Proofs

THE PROOFS OF THE PROPERTIES

DON'T EVER MEMORISE THEOREM PROOFS!
Develop the proofs/logic for yourself before checking against the methods shown below.

Theorems:	Definition \Rightarrow Property		
Converse theorems:	Property \Rightarrow		Make sense of
:---			
THE LOGIC			

> Theorem 1: The opposite angles of a ||${ }^{\mathbf{m}}$ are equal.

$$
\begin{array}{ll}
\text { Given: } & \|^{\mathrm{m}} \mathrm{ABCD} \\
& \text { i.e. } \mathrm{AB} \| \mathrm{DC} \text { and } \mathrm{AD} \| \mathrm{BC} \\
\text { RTP: } & \hat{\mathrm{A}}=\hat{\mathrm{C}} \text { and } \hat{\mathrm{B}}=\hat{\mathrm{D}} \\
\text { Proof: } & \hat{\mathrm{A}}+\hat{\mathrm{B}}=180^{\circ} \\
\mathrm{But}, & \ldots \text { co-interior } \angle^{s} ; A D \| B C \\
\therefore \hat{\mathrm{D}}=180^{\circ} & \ldots \text { co-interior } \angle^{s} ; A B \| D C \\
\text { Similarly, } \hat{\mathrm{A}}=\hat{\mathrm{A}} & \\
\text { RTP: Required to prove }
\end{array}
$$

Theorem 2: The opposite sides of a ||m are equal.
Given: $\|^{m} A B C D$
i.e. $A B \| D C$ and $A D|\mid B C$

RTP: $A B=C D$ and $A D=B C$
Construction: Draw diagonal AC ... It doesn't matter which diagonal you draw
Proof: $\ln \Delta^{s} A B C$ and $A D C$

1) $\hat{1}=\hat{2} \ldots$ alternate $\angle^{s} ; A B \| D C$
2) $\hat{3}=\hat{4} \quad \ldots$ alternate $\angle^{s} ; A D \| B C$
3) $A C$ is common

$\therefore \triangle \mathrm{ABC} \equiv \triangle \mathrm{CDA} \quad \ldots \angle \angle S$
$\therefore A B=C D$ and $A D=B C$
We could, of course, also have proved the first theorem this way!

Theorem 3: The diagonals of a parallelogram bisect

 one another.Given: $\|^{m} A B C D$ with diagonals $A C$ and $B D$ intersecting at O.
RTP: $\quad A O=O C$ and $B O=O D$
Proof: $\ln \Delta^{s} \mathrm{AOB}$ and DOC

1) $\hat{1}=\hat{2} \quad \ldots$ alt \angle^{s}; $A B \| D C$

2) $\hat{3}=\hat{4} \quad \ldots$ vert opp \angle^{s}
3) $\mathrm{AB}=\mathrm{DC} \quad \ldots$ opposite sides of $\|^{m}-$ see theorem 2 above
$\therefore \triangle \mathrm{AOB} \equiv \triangle \mathrm{COD} \quad \ldots \angle \angle \mathrm{S}$
$\therefore A O=O C$ and $B O=O D$

Note: We used the result in theorem 2 in the proof of theorem 3 but, we could've started from the beginning,
i.e. from the definition of a parallelogram. We would just have needed to prove an extra pair of Δ^{s} congruent (as in theorem 2).

THE CONVERSE PROOFS

Theorem 4: If a QUADRILATERAL has 2 pairs of opposite angles equal, then the quadrilateral is a ||m

Given: Quadrilateral $A B C D$ with $\hat{A}=\hat{C}$ and $\hat{B}=\hat{D}$
RTP: $A B C D$ is a parallelogram,
i.e. $A B \| D C$ and $A D \| B C$

Proof: Let $\hat{\mathrm{A}}=\hat{\mathrm{C}}=x$ and $\hat{\mathrm{D}}=\hat{\mathrm{B}}=\mathrm{y}$
then $\hat{A}+\hat{B}+\hat{C}+\hat{D}=360^{\circ} \ldots$ sum of the \angle^{s} of a quadrilateral $\therefore 2 x+2 y=360^{\circ}$
$\therefore 2) \quad \therefore x+y=180^{\circ}$
i.e. $\hat{A}+\hat{D}=180^{\circ}$ and $\hat{A}+\hat{B}=180^{\circ}$
$\therefore \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC} \ldots$ co-interior \angle^{s} are supplementary
\therefore ABCD is a parallelogram . . . both pairs of opposite sides \|
> Theorem 5: If a QUADRILATERAL has 2 pairs of opposite sides equal, then the quadrilateral is a $\|^{\mathbf{m}}$

Given: Quadrilateral $A B C D$ with $A B=C D$ and $A D=B C$

RTP: $A B C D$ is a parallelogram,
i.e. $A B \| D C$ and $A D \| B C$

Construction: Draw diagonal AC ... it doesn't matter which diag. you draw
Proof: In $\Delta^{s} A C D$ and $C A B$

1) $A C$ is common
2) $A D=B C \quad .$. given
3) $\mathrm{CD}=\mathrm{AB} \quad$. . given
$\therefore \triangle \mathrm{ACD} \equiv \triangle \mathrm{CAB} \quad \ldots S S S$
$\therefore \hat{1}=\hat{2}$ and $\hat{3}=\hat{4}$
$\therefore \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC} \quad \ldots$ alternate \angle^{s} are equal
$\therefore A B C D$ is a parallelogram . . . both pairs of opposite sides \|

Theorem 6: If a QUADRILATERAL has 1 pair of opposite

 sides equal and $\|$, then the quadrilateral is a $\|^{\mathbf{m}}$Given: Quadrilateral $A B C D$ with $A B=$ and || $D C$
RTP: ABCD is a parallelogram,
i.e. $A B|\mid D C$ and $A D \| B C$

Construction: Draw diagonal AC
It doesn't matter which diagonal you draw
Proof: In $\Delta^{s} \mathrm{ABC}$ and CDA

1) $A B=D C \quad .$. given
2) $\hat{1}=\hat{2} \quad \ldots$ alternate $\angle^{s} ; A B \| D C$
3) $A C$ is common
$\therefore \triangle \mathrm{ABC} \equiv \triangle \mathrm{CDA} \quad \ldots S \angle S$
$\therefore \hat{3}=\hat{4}$
$\therefore \mathrm{AD} \| \mathrm{BC} \quad \ldots$ alternate $\angle s$ equal
But $A B|\mid D C \quad .$. given
\therefore ABCD is a parallelogram . . . both pairs of opposite sides \|
> Theorem 7: If a QUADRILATERAL has diagonals which bisect one another, then the quadrilaterals is a || ${ }^{\mathbf{m}}$.
Given: Quadrilateral $A B C D$ with diagonals $A C$ and $B D$ intersecting at O and $A O=O C$ and $B O=O D$.

RTP: $A B C D$ is a parallelogram,
i.e. $A B|\mid D C$ and $A D| \mid B C$

Proof: In $\Delta^{s} A O B$ and $C O D$

1) $A O=O C \ldots$ given
2) $\hat{1}=\hat{2} \quad \ldots$ vert opp \angle^{s}
3) $\mathrm{BO}=\mathrm{O} \quad \ldots$ given
$\therefore \triangle \mathrm{AOB} \equiv \triangle \mathrm{COD} \quad \ldots S \angle S$
$\therefore B A \hat{D}=O \hat{C} D$
$\therefore \mathrm{AB}\left|\mid \mathrm{DC} \quad .\right.$. alternate \angle^{s} equal
Similarly, by proving $\triangle A O D \equiv \triangle C O B$ it can be shown that $A D \| B C$ $\therefore A B C D$ is a parallelogram

2 pairs of opp. sides are $\|$

In our sums, we may use ALL properties and theorem statements . .

To prove that a quadrilateral is a $\|^{\mathbf{m}}$ we may choose one of 5 ways:

1) Prove both pairs of opposite sides || (the definition).
2) Prove both pairs of opposite sides $=($ a property $)$.
3) Prove 1 pair of opposite sides $=$ and $\|$ (a property).
4) Prove both pairs of opposite angles $=($ a property $) . \ldots$ THE ANGLES
5) Prove that the diagonals bisect one another (a property). ... THE DIAGONALS

Using diagonals . . .

To prove a parallelogram is a rectangle: prove that the diagonals are equal.
To prove a parallelogram is a rhombus: prove that the diagonals intersect at right angles, or prove that the diagonals bisect the angles of the rhombus.

Gr 10: THE MIDPOINT THEOREM

FACT 1

The line segment through the midpoint of one side of a triangle, parallel to a second side, bisects the third side.

```
Given:
P midpoint AB & PQ|BC
Result:
Q midpoint AC & PQ = \frac{1}{2}}B
```


FACT 2

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half of the third side.

```
Given:
P & Q midpoints of AB & AC
Result:
PQ || BC & PQ = \frac{1}{2}}\textrm{BC
```


Regard these Facts $1 \& 2$ as a special case of the Proportion Theorem in Gr 12 Geometry.

AN ASSIGNMENT: PROOFS

1.

(See Exercise 4 Q3.2 for the proof)
2.

(See Exercise 4 Q3.1 for the proof)

$L^{\text {s }}$, Lines, $\Delta^{\text {s }}$

2.2 Calculate, with reasons, the values of x.
2.2.2

Gr 10 Maths 3-in-1
p. 7.6 Q2.2.2
5. State whether the following pairs of triangles are congruent or similar, giving reasons for your choice.
5.2

Gr 10 Maths 3-in-1
p. 7.6 Q5.2
9. $A B C D$ is a quadrilateral.
E is a point on $B C . P, Q, R$ and S are the midpoints of $A B, A E, D E$ and $D C$ respectively.

Prove that:
9.1 $P Q|\mid R S$
9.2 $P Q+Q R+R S=\frac{1}{2}(A D+B C)$

Quadrilaterals

7. Calculate the area of the kite alongside.

$$
\text { Gr } 10 \text { Maths 3-in-1 }
$$

7. Calculate the value of x giving reasons, given that $A B C D$ is a square and $B \hat{F} D=125^{\circ}$.

Gr 10 Maths 3-in-1 p. 7.14 Q7.2
15.1 Make a neat copy of this sketch and fill in all the other angles in terms of x.

Reasons are not required.

15.2 Complete the following statement: $\Delta A B E|||\Delta \ldots||| \Delta$.
15.3 If $B C=18 \mathrm{~cm}$ and $B E=12 \mathrm{~cm}$, calculate the length of

15.3.1 AE

15.3.2 $A B$ correct to two decimals.
15.4 Hence calculate the area of rectangle $A B C D$ to the nearest cm^{2}.

Gr 10 Maths 3-in-1

The Language (Vocabulary)

GROUP 1 AND 2

- Centre
- Diameter
- Radius

- Circumference
- Chords

- Arcs (major \& minor)

- Segments (major \& minor)
- Sectors

- Central and Inscribed angles

In all the figures, arc $A B(\widehat{A B})$, or chord $A B$, subtends:

- a central AÔB at the centre of the circle, and
- an inscribed APB at the circumference of the circle.

Consider that subtend means support.

To ensure that you grasp the meaning of the word 'subtend':

- Take each of the figures:
\rightarrow Place your index fingers on A \& B
\rightarrow move along the radii to meet at O and back; then,
จ move to meet at P on the circumference and back.

- Turn your book upside down and sideways.

You need to recognise different views of these situations.

- Take note of whether the angles are acute, obtuse, right, straight or reflex.
- Redraw figures 1 to 4 leaving out the chord $A B$ completely and observe the arc subtending the central and inscribed angles in each case.

- Cyclic Quadrilaterals

A cyclic quadrilateral is a quadrilateral which has all 4 vertices on the circumference of a circle.

Points A, B, C and D are concyclic,
i.e. they lie on the same circle.

Note: Quadrilateral $A O C B$ is not a cyclic quadrilateral because point O is not on the circumference! (A, O, C and B are not concyclic)

> We name quadrilaterals by going around, either way, using consecutive vertices, i.e. ABCD or ADCB, not ADBC.

Exterior angles of polygons

The exterior angle of any polygon is an angle which is formed between one side of the polygon and another side produced.
e.g. A triangle

$A C D$ is an exterior \angle of $\triangle A B C$. [NB: BCD is a straight line!]
e.g. A quadrilateral/ cyclic quadrilateral

$A \hat{D} E$ is an exterior \angle of c.q. $A B C D$.
[NB: CDE is a straight line!]

- Tangents

Special lines

- A tangent is a line which touches a circle at a point.

- A secant is a line which cuts a circle (in two points).

NB: It is assumed that the tangent is perpendicular to the radius (or diameter) at the point of contact.

SUMMARY OF CIRCLE GEOMETRY THEOREMS

TII | The |
| :---: |
| Cyclic Quad.' |
| group |

$$
x+y=180^{\circ}
$$

There are ' $\mathbf{3}$ ways to prove that a quad. is a cyclic quad'.

```
IV \begin{tabular}{c} 
The \\
'Tangent' \\
group
\end{tabular}
```


There are ' $\mathbf{2}$ ways to prove that a line is a tangent to $a \odot^{\prime}$.

5

[^2]
GROUPING OF CIRCLE GEOMETRY THEOREMS

- The grey arrows indicate how various theorems are used to prove subsequent ones

PROVING THEOREMS

Method 1:

Theorem Statement

Method 2:

chord and inscribed \angle

\rightarrow

> Proofs $\mathbf{6}$ to $\mathbf{9}$ are not examinable, but, the LOGIC is crucial when studying geometry.

Circles

EXAMPLE 7

> Don't be put off by this drawing! Direct your focus to one situation at a time \odot

Make statements, with reasons,

Gr 11 Maths 3-in-1

$$
\text { p. } 9.16
$$

2. In $\odot A B Y Q:$ about \hat{B}_{1} and $A \hat{Q} Y$
3. In quadrilateral APTQ: about \hat{P}_{1} and $A \hat{Q} T$
4. What can you conclude about quadrilateral APTQ?

Mark the \angle^{s} on the drawing as you proceed

Answers

1. In c.q. XPBA: $\hat{\mathrm{P}}_{1}=\hat{\mathrm{B}}_{1} \quad \ldots$ arc $X A$ subtends \angle^{s} in same segment
2. In c.q. $\mathrm{ABYQ}: \hat{\mathrm{B}}_{1}=\mathrm{A} \hat{\mathrm{Q}} \mathrm{Y} \quad \ldots$ exterior \angle of cyclic quad.
3. In quad. APTQ: $\hat{\mathrm{P}}_{1}=\mathrm{A} \hat{\mathrm{Q}} \mathrm{T} \quad \ldots$ both $=\hat{B}_{l}$ above
4. $\therefore \mathrm{APTQ}$ is a cyclic quad. ... converse of exterior \angle of cyclic quad.

EXAMPLE 8

Prove that PA
is a tangent to $\odot M$.

Answers

Gr 11 Maths 3-in-1
p. 9.16 Q14

In right- $\angle^{d} \triangle M A Q$:
$A M=5$ units
.. 3:4:5 Δ; Pythag.
$\therefore \mathrm{TM}=5$ units $\quad . . \operatorname{TM}=A M=$ radii
. $P M=13$ units
$\therefore \triangle \mathrm{PAM}$ is a $5: 12: 13 \Delta!$
i.e. $P M^{2}=P A^{2}+A M^{2}$

\therefore PAM $=90^{\circ} \quad \ldots$ converse of Pythag
. PA is a tangent to $\odot \mathbf{M}<\ldots$. . converse tan chord theorem

Module 9b: Circle Geometry

- Notes
- Exercises
- Full Solutions

Proportion Theorem

Example 9

In the diagram, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACD}$ are drawn. F and G are points on sides $A B$ and $A C$ respectively such that $A F=3 x$, $\mathrm{FB}=2 x, A G=12 y$ and $G C=8 y . H, E$ and K are points on side $A D$ such that $G H \| C K$ and $G E \| C D$.

1. Prove that:

$$
\text { 1.1 FG\|BC } \quad 1.2 \frac{\mathrm{AH}}{\mathrm{HK}}=\frac{\mathrm{AE}}{\mathrm{ED}}
$$

(2)(3)

Gr 12 Maths Toolkit:
DBE Past Papers, p. 12 Q9

Study and analyse the diagram . . .

- Notice that there are $\mathbf{3} \Delta^{\mathbf{5}}$ on which to focus.

And, in $\triangle A C D, 2$ pairs of $\|$ lines. Highlight these in colour! (And, the first question requires proof of || lines.)

- Clearly, only 2 theorems are involved:
the proportion theorem and its converse (theorem)
(Study these $\underline{2}$ theorem statements well!)

Solution

1.1

To prove || lines, we must prove that FG divides the 2 sides of the triangle in proportion; i.e. that $\frac{A F}{F B}=\frac{A G}{G C}$.
This is the application of the converse proportion theorem.

In $\triangle A B C$:

$$
\frac{A F}{F B}=\frac{3 x}{2 x}=\frac{3}{2} \text { and } \frac{A G}{G C}=\frac{12 y}{8 y}=\frac{3}{2}
$$

$$
\therefore \frac{A F}{F B}=\frac{A G}{G C}
$$

\therefore FG \|| BC < $\quad .$. proportion - converse of the proportion theorem
1.2 In $\triangle \mathbf{A C K} \Rightarrow \frac{\mathrm{AH}}{\mathrm{HK}}=\frac{\widehat{\mathrm{AG}}}{\mathrm{GC}} \quad$. . prop. thm.; $G H \| C K$

In $\triangle \mathbf{A C D} \Rightarrow \quad=\frac{\mathrm{AE}}{\mathrm{ED}}<\ldots$ prop. thm. $; G E \| C D$

Question

2. If it is further given that $\mathrm{AH}=15$ and $\mathrm{ED}=12$, calculate the length of EK.

Solution

2. $\frac{\mathrm{AG}}{\mathrm{GC}}=\frac{3}{2} \quad \ldots$ from 1.1

$$
\begin{aligned}
& \therefore \frac{\mathrm{AH}}{\mathbf{H K}}=\frac{3}{2} \quad \text { and } \quad \frac{\mathbf{A E}}{\mathrm{ED}}=\frac{3}{2} \quad \ldots \text { from } 1.2 \\
& \therefore \frac{15}{H K}=\frac{3}{2} \quad \therefore \frac{A E}{12}=\frac{3}{2} \\
& \therefore H K=10 \quad \therefore A E=18 \\
& \therefore \text { HE }=3 \mid
\end{aligned}
$$

Worked Example 10

In $\triangle P Q R$ the lengths of $P S, S Q, P T$ and TR are
$3,9,2$ and 6 units respectively.
5.1 Give a reason why ST || QR.
5.2 If $A B$ || $Q P$ and $R A: A Q=1: 3$, calculate the length of $T B$.

Answers

$5.1 \ln \triangle \mathrm{PQR}$:

$$
\begin{gathered}
\frac{\mathbf{P S}}{\mathbf{S Q}}=\frac{3}{9}=\frac{1}{3} \quad \& \quad \frac{\mathbf{P T}}{\mathbf{T R}}=\frac{2}{6}=\frac{1}{3} \\
\therefore \frac{\mathbf{P S}}{\mathbf{S Q}}=\frac{\mathbf{P T}}{\mathbf{T R}}
\end{gathered}
$$

ST \| QR < converse of proportion thm

5.2 $\ln \triangle \mathrm{RPQ}:$
$\frac{\mathbf{R B}}{\mathbf{R P}}=\frac{R A}{R Q}=\frac{\mathbf{1}}{\mathbf{4}}$
$R B=\frac{1}{4} R P$
$=2$ units
<
. . proportion theorem ; $A B \| Q P$
$R A: A Q=1: 3$
$R P=P T+T R=8$ units

TB = 4 units

Proving the Proportion theorem

Be sure to revise the following two concepts involving areas of triangles.
These concepts are used in the proof of the proportion theorem which follows.

IMPORTANT CONCEPTS REQUIRED

(1) Δ^{s} on the same base and between the same || lines

have equal areas.

$\triangle \mathrm{ABC}=\triangle \mathrm{DBC}$ in area
These Δ^{s} have the same base, $B C$, and the same height (since they lie between the same || lines).
(2) When Δ^{s} have the same height, the ratio of their areas equals the ratio of their bases.

$$
\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle A C D}=\frac{\frac{1}{2} x \cdot h}{\frac{1}{2} y \cdot h}=\frac{x}{y}
$$

These Δ^{s} have a common vertex, A, and therefore the same height.

Given: $\triangle A B C$ with $D E \| B C, D \& E$ on $A B$ \& $A C$ respectively.

To prove: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Join DC \& BE

Proof: $\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle D B E}=\frac{\frac{1}{2} A D \cdot h}{\frac{1}{2} D B \cdot h}=\frac{A D}{D B}$

Similarly: $\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle E D C}=\frac{A E}{E C} \quad\left(\frac{\frac{1}{2} A E \cdot h^{\prime}}{\frac{1}{2} E C \cdot h^{\prime}}\right.$

But: $\triangle \mathrm{DBE}=\triangle \mathrm{EDC} \ldots$ on the same base $D E$; between $\|$ lines, $D E \& B C$
and: $\triangle \mathrm{ADE}$ is common

$$
\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle D B F}=\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle F D C}
$$

$$
\therefore \frac{A D}{D B}=\frac{A E}{E C}<
$$

PROPORTION THEOREM PROOF: A Visual presentation

The Situation

Parallel lines in a Δ

The Construction

Create $2 \Delta^{s}$

Heights of Δ^{s}

But

The Theorem Statement:

$$
\rightarrow \therefore \frac{a}{b}=\frac{c}{d}
$$

Similar $\Delta^{\text {s }}$ vs.

Proportion Theorem Application

Find the values of x and y in the figure alongside.

Answer

- In $\triangle \mathrm{ABC}: \frac{x}{10}=\frac{5}{8}$
. . DE \| BC; proportion theorem
$\times 10$)

$$
\therefore x=6 \frac{1}{4} \mathrm{~cm}<
$$

- $\triangle \mathrm{ADE}\left|\left|\left\lvert\, \triangle \mathrm{ABC} \Rightarrow \frac{\mathrm{y}}{12}=\frac{5}{8}\right.\right.\right.$
$\ldots \frac{D E}{B C}=\frac{A E}{A C}$; proportional sides
$\times 12) \quad \therefore \mathrm{y}=7 \frac{1}{2} \mathrm{~cm}<$

Note:

Distinguish between the applications of the similar $\Delta^{\mathbf{s}}$ and proportion theorems! (See next column.)

2 Find x and y in the sketch alongside

- The Proportion theorem (finding x)
In $\triangle A B C: D E \| B C$

The
unknown

$\times 15) \quad \therefore x=10$ units

The proportion theorem does NOT refer to the lengths of the parallel lines, only to $A B$ and $A C$
and their segments.

Similar triangles theorem (finding y) In $\Delta^{\mathrm{s}} \mathrm{ADE}$ and ABC :
(1) \hat{A} is common
(2) $\mathrm{A} \hat{D} \mathrm{E}=\hat{\mathrm{B}} \quad \ldots$ corresponding $\angle^{s} ; D E \| B C$
$\left[\& A E \hat{D}=\hat{C} \ldots\right.$ corresponding $\left.\angle^{s} ; D E \| B C\right]$

In the same figure above $\triangle A B C$ can be seen as an enlargement of $\triangle A D E$ and the sides of these triangles are proportional. $\frac{y}{30}=\frac{12}{\mathbf{1 2 + 8}}\left(\right.$ or $\left.\frac{15}{\mathbf{1 5 + 1 0}}\right)$
$\therefore \triangle \mathrm{ADE} \|| | \triangle \mathrm{ABC}$

$$
\begin{aligned}
& \frac{D E}{B C}=\frac{A D}{A B} \text { or } \frac{A E}{A C} \\
& \frac{y}{30}=\frac{12}{20}
\end{aligned}
$$

. . . equiangular Δ^{s}

$$
\text { Note: } \frac{D E}{B C} \neq \frac{A D}{D B} \text { or } \frac{A E}{E C}
$$

because $B C$ is a side of $\triangle A B C$, while $D B$ and $E C$ are not.
$\times 30) \quad \therefore y=18$ units
It is only by using the similarity of the triangles, that we can relate the lengths of the parallel sides to the lengths of the other 2 sides of the triangles.

Similar $\Delta^{\mathbf{s}}$

EXAMPLE 11 (National November 2017 P2, Q10) 34\%
In the diagram, W is a point on the circle with centre O.

V is a point on OW.
Chord MN is drawn such that $\mathrm{MV}=\mathrm{VN}$.

The tangent at W meets OM produced at T and ON produced at S .
(a) Give a reason why $\mathrm{OV} \perp \mathrm{MN}$. 44\%
(b) Prove that:

24\% (i) MN || TS
(ii) TMNS is a cyclic quadrilateral
(iii) OS.MN = 2ON.WS

Answers

(a) Line (OV) from centre to midpoint of chord (MN) <

In this case, the midpoint of the chord is given, and we can conclude that $\mathrm{OV} \perp \mathrm{MN}$ because of that.

Note: Analyse the information and the diagram.

So far, we have used and applied a 'centre' theorem, in (a). Another clue is the 'tangent' at W.

Think about tangent facts
(b) (i) OWS $=90^{\circ} \ldots$ tangent \perp radius
\therefore OV̂N $=$ OWS $\left(=90^{\circ}\right)$
$\therefore \mathrm{MN} \| \mathrm{TS} \quad .$. corresp. \angle^{s} equal

The most 'basic' way to prove lines || is:
alt. or corresp. \angle^{s} equal or co-int. $\angle{ }^{s}$ suppl.

There are 3 ways to prove that a quadrilateral is a cyclic quadrilateral - choose 1 :
(1)

Prove that:
$x+\mathrm{y}=180^{\circ}$
(2)

Prove that:
Ext. $\angle=$ int. opp. \angle
3

Prove that:
A side subtends equal \angle^{s} at 2 other vertices
$\hat{\mathrm{M}}_{1}=\hat{\mathrm{N}}_{1} \ldots \angle^{s}$ opposite equal radii
$=\hat{S} \quad \ldots$ corresp. $\angle^{s} ; M N \| T S$
\therefore TMNS is a cyclic quadrilateral

We chose (2) and proved that the exterior \angle of quadrilateral TMNS = the interior opposite \angle
converse ext. L of cyclic quad.
(iii)

This question looks like ratio and proportion.

 Mark the sides on the diagram.The sides appear to involve \triangle OWS, which has VN || WS, (even though MN = 2VN)
. . . Maybe apply the proportion theorem in this Δ ?
But, the sides in the question involve the horizontal sides WS and VN.
So, proportion theorem is excluded. We will use similar Δ^{s} !

In $\Delta^{\mathrm{s}} \mathrm{OVN}$ and OWS
(1) \hat{O}_{2} is common
(2) OV̂N = OŴS ... corresp. \angle^{s}; MN \| $\|$ TS
$\therefore \triangle \mathrm{OVN}||\mid \triangle \mathrm{OWS} \quad \ldots \angle \angle \angle$

$$
\begin{aligned}
& \text { Let's 'arrange' the sides to suit the question. } \\
& \therefore \frac{\mathrm{OS}}{\mathrm{ON}}=\frac{\mathrm{WS}}{\mathrm{VN}}\left(=\frac{\mathrm{OW}}{\mathrm{OV}}\right) \quad \ldots \text { equiangular } \Delta^{s}
\end{aligned}
$$

$\therefore \mathrm{OS} . \mathrm{VN}=\mathrm{ON} . \mathrm{WS}$
But $\mathrm{VN}=\frac{1}{2} \mathrm{MN} \ldots V$ midpoint $M N$
$\therefore \mathrm{OS} . \frac{1}{2} \mathrm{MN}=\mathrm{ON} . \mathrm{WS}$
$\times 2) \therefore$ OS.MN $=2 O N . W S<$

'A Mix' from DBE Nov 2021

Worked Example 12 63\%

9. In the diagram, PQRS is a cyclic quadrilateral. PS is produced to W .
TR and TS are tangents to the circle at R and S respectively.
$\hat{T}=78^{\circ}$ and $\hat{Q}=93^{\circ}$.
9.1 Give a reason why $\mathrm{ST}=\mathrm{TR}$.

68\%
9.2 Calculate, giving reasons, the size of: 62\%

9.2 .1	\hat{S}_{2}	9.2 .2	$\hat{\mathrm{~s}}_{3}$	$(2)(2)[5]$

Gr 12 Maths Toolkit:
DBE Past Papers, p. 32
9. In the diagram, PQRS is a cyclic
quadrilateral. PS is produced to W .
TR and TS are tangents to the circle at R and S respectively.
$\hat{\mathrm{T}}=78^{\circ}$ and $\hat{\mathrm{Q}}=93^{\circ}$.
9.1 Give a reason why $S T=T R$.
9.2 Calculate, giving reasons, the size of:
9.2.1 $\hat{\mathrm{S}}_{2}$
9.2.2 $\hat{\mathrm{S}}_{3}$
(2)(2) [5]

MEMOS

9.1 Tangents from a common point.
9.2.1 $\hat{\mathrm{S}}_{2}=\hat{\mathrm{R}}_{2} \quad \ldots \angle^{s}$ opposite equal sides
$=\frac{1}{2}\left(180^{\circ}-78^{\circ}\right) \quad \ldots \angle \operatorname{sum}$ of Δ
$=51^{\circ}<$
9.2.2 $\quad \hat{\mathrm{S}}_{3}+\hat{\mathrm{S}}_{2}=\hat{\mathrm{Q}} \quad \ldots$ ext. \angle of cyc. quad.
$\therefore \hat{\mathrm{S}}_{3}+51^{\circ}=93^{\circ}$
$\therefore \hat{\mathbf{S}}_{3}=42^{\circ}<$

Copyright © The Answer Series

Worked Example 13 24\%

10. In the diagram, $B E$ and $C D$ are diameters of a circle having M as centre. Chord $A E$ is drawn to cut $C D$ at F. $\mathbf{A E} \perp \mathbf{C D}$ Let $\hat{C}=x$.
10.1 Give a reason why $\mathrm{AF}=\mathrm{FE}$. 47%
10.2 Determine, giving reasons, the size 37% of \hat{M}_{1} in terms of x.
10.3 Prove, giving reasons, that $A D$ is 37% a tangent to the circle passing through A, C and F.
10.4 Given that $C F=6$ units and

9\% $A B=24$ units, calculate, giving reasons, the length of $A E$.

10. In the diagram, $B E$ and $C D$ are diameters of a circle having M as centre. Chord AE is drawn to cut CD at $\mathrm{F} . \mathrm{AE} \perp \mathrm{CD}$.
Let $\hat{\mathrm{C}}=x$.
10.1 Give a reason why $A F=F E$.
10.2 Determine, giving reasons, the size of \hat{M}_{1} in terms of x.
10.3 Prove, giving reasons, that $A D$ is a tangent to the circle passing through A, C and F.
10.4 Given that $C F=6$ units and $A B=24$ units, calculate, giving reasons, the length of $A E$.

MEMOS

10.1 $\mathrm{MF} \perp \mathrm{AE}$, i.e. line from centre \perp to chord
$10.2 \quad \hat{M}_{1}=2 \hat{\mathrm{~A}}_{1} \quad \ldots \quad \angle$ at centre $=2 \times \angle$ at circ.
\& $\hat{\mathrm{A}}_{1}=90^{\circ}-x \quad \ldots \angle$ sum of Δ
$\therefore \hat{M}_{1}=2\left(90^{\circ}-x\right)$
$=180^{\circ}-2 x<$

Copyright © The Answer Series

10.3 AC is a diameter of $\odot A C F$ conv \angle in semi- \odot
\& $\mathrm{DA} C=90^{\circ} \quad \ldots \quad \angle$ in semi- \odot; diameter $C D$
i.e. line $A D \perp$ diameter $A C$

AD is a tangent to $\odot A C F$
10.4 In $\triangle \mathrm{EAB}$
F is the midpoint of EA
\& M is the midpoint of $E B$
$F M=\frac{1}{2} A B=12$ units line from centre of \odot
\& $E B=D C=2(6+12) \quad \ldots$ diameter
$=36$ units
In right $\angle^{\mathrm{d}} \triangle \mathrm{EAB}$:
$\mathrm{AE}^{2}=\mathrm{EB}^{2}-\mathrm{AB}^{2} \quad \ldots$ Theorem of Pythagoras

$$
=36^{2}-24^{2}
$$

$$
=720
$$

$\therefore A E=\sqrt{720}=12 \sqrt{5} \approx 26,83$ units $<$
OR: $\quad E A \hat{B}=90^{\circ} \quad \ldots \angle$ in semi $-\odot$
In $\triangle \mathrm{EFM} \& \triangle \mathrm{EAB}$
(1) \hat{E} is common
(2) $E \hat{F} M=E A \hat{B}$
$\therefore \triangle E F M \| \triangle E A B \quad \ldots \angle L \angle$
$\therefore \frac{F M}{A B}=\frac{E F}{E A}=\frac{1}{2}$
$\therefore F M=12$ units
$\therefore M E=6+12=18$ units \qquad
$A F=6 \sqrt{5}$
$A E=12 \sqrt{5}$
conv tan \perp rad

$$
\left[\begin{array}{rl}
\text { OR: } \hat{A}_{2} & =x \\
\therefore \hat{A}_{2} & =\hat{C}
\end{array}\right.
$$

AD is a tangent to $\odot A C F<$ conv tan chord thm
$E F^{2}=M E^{2}-F M^{2}$
$=18^{2}-12^{2}$
$=180$
$\therefore E F=6 \sqrt{5}$
$\therefore A E=12 \sqrt{5} \approx 26,83$ units
(OR: $\ln \triangle E A B$:
F is the midpoint of $E A$
\& M is the midpoint of $\mathrm{EB} \quad \ldots$ line from centre of \odot

$$
\mathrm{FM}=\frac{1}{2} \mathrm{AB}=12 \text { units } \quad \ldots \text { midpt theorem }
$$

$M C=18$
MD $=18 \quad .$. radii equal
$\triangle C F A$ ||| \triangle AFD $\ldots \angle \angle \angle$
$\therefore \frac{\mathrm{FA}}{\mathrm{FD}}=\frac{\mathrm{CF}}{\mathrm{AF}}$
$\begin{aligned} A F^{2} & =C F . F D \\ & =6.30\end{aligned}$
$=6.30$
$=180$
Theorem of Pythagoras

\square

Worked Example 14 34\%
11.1 In the diagram, chords DE, EF and DF are 57% drawn in the circle with centre O .

KFC is a tangent to the circle at F.

Prove the theorem which states that $D \hat{F} K=\hat{E}$.

MEMOS

The angle between a tangent to a circle and a chord drawn from the point of contact is equal to the angle subtended by the chord in the alternate segment.

Method 1

$$
\text { Draw radii and use ' } \angle \text { at centre' theorem. }
$$

Given: $\odot O$ with tangent at F and chord $F E$ subtending \hat{D} at the circumference. RTP: $\quad D \hat{F} K=\hat{E}$

Construction: radii OF and OD
Proof:
Let DFFK $=x$
OF̂K $=90^{\circ} \quad \ldots$ radius \perp tangent
\therefore OFिD $=90^{\circ}-x$
\therefore ÔिF $=90^{\circ}-x \quad \ldots \angle^{s}$ opposite equal radii
DÔF $=2 x \quad \ldots$ sum of \angle^{s} in Δ
$\hat{E}=x \quad \ldots \quad \angle$ at centre $=2 \times \angle$ at circumference
DF̂K = \hat{E} <
Method 2 We use 2 'previous' facts involving right $\angle \mathrm{s}$
so, draw a diameter!
(2) \angle in semi- $\odot=90^{\circ}$ so, join RK!

These proofs are logical \& easy to follow.

Given: $\odot \bigcirc$ with tangent at F and chord FE subtending D at the circumference. RTP: \quad DFFK $=\hat{E}$

Construction: diameter FM; join ME

```
Proof: M\hat{FK}=9\mp@subsup{90}{}{\circ}}\ldots\mathrm{ .. tangent }\perp\mathrm{ diameter
    & MÊF = 900
Then .
Let DFK = x
    MFिD =90'-x
    MÊD = 90
    DE\hat{F = x}
    D\hat{FK}= DE\hat{F}<
```


11.2 In the diagram, PK is a tangent to the 33% circle at K. Chord LS is produced to P. N and M are points on KP and SP respectively such that MN || SK.
Chord KS and LN intersect at T.
11.2.1 Prove, giving reasons, that:
(a) $\hat{\mathrm{K}}_{4}=\mathrm{NML}$
(b) KLMN is a cyclic quadrilateral.
11.2.2 Prove, giving reasons, that $\Delta \mathrm{LKN}||\mid \mathrm{KSM}$.
(5)
11.2.3 If $\mathrm{LK}=12$ units and $3 \mathrm{KN}=4 \mathrm{SM}$, determine the length of $K S$.
11.2.4 If it is further given that NL = 16 units, $L S=13$ units and $\mathrm{KN}=8$ units, determine, with reasons, the length of LT. (4)
11.2 In the diagram, PK is a tangent to the circle at K. Chord LS is produced to P. N and M are points on KP and SP respectively such that $M N \| S K$.
Chord KS and LN intersect at T.
11.2.1 Prove, giving reasons, that:
(a) $\hat{K}_{4}=N \hat{M L}$
(b) KLMN is a cyclic quadrilateral.
11.2.2 Prove, giving reasons, that $\Delta \mathrm{LKN}||\mid \Delta \mathrm{KSM}$.
11.2.3 If $\mathrm{LK}=12$ units and $3 \mathrm{KN}=4 \mathrm{SM}$, determine the length of KS.
(4)
11.2.4 If it is further given that NL = 16 units, LS = 13 units and $\mathrm{KN}=8$ units, determine, with reasons, the length of LT. (4)

MEMOS
$=\mathbf{N M} \mathbf{L} \quad \ldots$ corresp $\angle^{s} ; M N \| S K$
(b) $\hat{\mathrm{K}}_{4}=\mathrm{N} \hat{\mathrm{M}} \mathrm{L}$

11.2.2 $\operatorname{LK} \mathrm{N}=\hat{\mathrm{M}}_{1} \quad \ldots$ ext \angle of cyclic quad. $K L M N$

$$
=\hat{\mathrm{S}}_{2} \quad \ldots \operatorname{corresp} \angle^{s} ; M N \| S K
$$

. In $\Delta^{\mathrm{s}} \mathrm{LKN}$ \& KSM
(1) $\mathrm{LK} N=\hat{S}_{2}$
(2) $\hat{\mathrm{N}}_{3}=\hat{\mathrm{M}}_{3} \quad \ldots \angle^{s}$ in same segment

$$
\Delta \text { LKN }\|\| \Delta K S M<\ldots \angle \angle \angle
$$

11.2.3

$\frac{K S}{12}=\frac{3}{4}$
$K S=\frac{36}{4}$
$=9$ units <
11.2.4 $4 \mathrm{SM}=3 \mathrm{KN}=3 \times 8=24$

SM = 6 units

$$
\text { In } \Delta \mathrm{LNM}: \begin{aligned}
\frac{\mathrm{LT}}{\mathrm{LN}} & =\frac{\mathrm{LS}}{\mathrm{LM}} \cdots \text { prop thm; MN\|ST } \\
\therefore \frac{\mathrm{LT}}{16} & =\frac{13}{13+6} \\
\therefore \mathrm{LT} & =\frac{13}{19} \times 16 \\
& =\frac{208}{19} \\
& \approx 10,95 \text { units }<
\end{aligned}
$$

Euclidean Geometry

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 7)
\# 1: Lines, angles \& triangles: revision • vocabulary \& facts
\# 2: Quadrilaterals: revision • definitions • theorems • areas
$7.1 \rightarrow 7.7$
\# 3: Midpoint theorem
$7.8 \rightarrow 7.15$
\# 4: Polygons: definitions \& types • interior angles • exterior angles
$7.16 \rightarrow 7.17$

Note: The Gr 10 Exemplar Exams and Memos are at the end of the book

Gr 11 Maths 3-in-1 (Module 9)

\# 1: Revision from earlier grades
$9.1 \rightarrow 9.5$
\# 2: Circle Geometry
$9.6 \rightarrow 9.26$
Note: The Gr 11 Exemplar Exams and Memos are at the end of the book

Gr 12 Maths 2-in-1 (Module 10)

\# 1: Circle Geometry
\# 2: Proportion Theorem
\# 3: Similar Triangles
\# 4: Mixed
Back pages: Circle Geometry, Proportion and Similar Triangles Theorem PROOFS
Grouping of Circle Geometry Theorems
Converse Theorems in Circle Geometry
Theorem Statements \& Acceptable Reasons

See Challenging Questions booklet:
pages $29 \rightarrow 38$

See the Topic Guide on p. 148 for further exam practice.

$$
36 \rightarrow 40
$$

$40 \rightarrow 42$

$$
42 \rightarrow 43
$$

$$
43
$$

i \rightarrow iii
viii
ix $\mathrm{x} \rightarrow$ xii

Gr 12 Maths Toolkit: DBE Past Papers

Back pages: Circle Geometry, Proportion and Similar Triangles Theorem PROOFS Grouping of Circle Geometry Theorems
Theorem Statements \& Acceptable Reasons
i \rightarrow iii
xiii
xiv \rightarrow xvi

ABOUT " ${ }^{\text {"ANSWER }}$ GRADE 12 MATHS 2-IN-1

3

$$
\begin{aligned}
& \text { GRADE } 12 \\
& \text { MATHS 2-IN-1 } \\
& \begin{array}{ll}
\text { Mathematics } & 12
\end{array} \\
& \text { anc } \\
& \text { SEERS } \\
& \text { a unique } \\
& \text { question and } \\
& \text { of mastering } \\
& \text { maths } \\
& \text { a way } \\
& \text { of thinking }
\end{aligned}
$$

GRADE 12
MATHS 2-IN-1

DEVELOPS
($\sqrt{ }$ conceptual understanding
(procedural fluency and adaptability
reasoning techniques
a variety of strategies for problem-solving

The questions and detailed solutions have been structured into ...

SECTION

SEPARATE TOPICS

Mathematics
TEST \& EXAM PREPARATI

2-in-1

F ANSWER

It is important that learners focus on and master one topic at a time before attempting past papers which could be bewildering and demoralising.

In this way they can develop confidence and a deep understanding.

SECTION
 SEPARATE TOPICS

The questions in this section are designed to ...

©
transition from basic
concepts through to the more challenging concepts
(6 include critical prior learning (Gr 10 \& 11) when this foundation is required for mastering the entire FET curriculum

SECTION

EXAM PAPERS

Mathematics
TEST \& EXAM PREPARATION

2-in-1

ONSWER

When learners have worked through the topics and grown fluent, they can then move on to the exam papers to experience working a variety of questions in one session, and to perfect their skills.

The TOPIC GUIDES will enable learners to continue mastering one topic at a time, even when working through the exam papers.

CHALLENGING QUESTIONS \& MEMOS

These questions are Cognitive Level 3 \& 4 questions, diagnosed as such following poor performance of learners in recent examinations.

Theory without practice is empty

Practice without theory

 is blindPhilosopher, Immanuel Kant (18 ${ }^{\text {th }}$ century philosopher)

[^0]: Copyright © The Answer Series

[^1]: Copyright © The Answer Series

[^2]: Copyright © The Answer Series

