KZN 2024

Maths Subject Advisors Workshop

EUCLIDEAN GEOMETR

 Problem Solving
\# BREAK THE 70\% CEILING

LEARN HOW - Remember for a moment LEARN WHY - Remember for a life time

Compiled by Anne Eadie

A Warm-up Example

DBE May 2024: Q10

- In the diagram, COD is the diameter of the circle with centre O .
- EA is a tangent to the circle at F.
- $A O \perp C E$.
- Diameter COD produced intersects the tangent to the circle at E .
- OB produced intersects the tangent to the circle at A .
- CF intersects OB in T.
- CB, BD, OF and FD are drawn.

Prove, with reasons, that:
10.1 TODF is a cyclic quadrilateral
$10.2 \hat{D}_{3}=\hat{T}_{1}$
10.3Δ TFO ||| Δ DFE
10.4 If $\hat{B}_{2}=\hat{E}$, prove that $D B|\mid E A$.
(2)
10.5 Prove that $\mathrm{DO}=\frac{\mathrm{TO} . \mathrm{FE}}{\mathrm{AB}}$
(5) [19]

KZN Grade 122024 ATP

TERM 2				
NUMBER OF DAYS	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$	TOPIC	CURRICULUM STATEMENT
$\begin{gathered} 03-10 / 04 \\ (6 \text { days }) \end{gathered}$			EUCLIDEAN GEOMETRY	1. Revise earlier work on the necessary and sufficient conditions for polygons to be similar. 2. Prove (accepting results established in earlier grades) that a line drawn parallel to one side of a triangle divides the other two sides proportionally (and the Midpoint Theorem as a special case of this theorem). 3. Solve proportionality problems and prove riders.
$\begin{gathered} 11-18 / 04 \\ \text { (6 days) } \end{gathered}$			EUCLIDEAN GEOMETRY	4. Prove (accepting results established in earlier grades): 4.1 that equiangular triangles are similar; 4.2 that triangles with sides in proportion are similar; and 4.3 the Pythagorean Theorem by similar triangles. 5. Solve similarity problems and prove riders.

THE ANSWER SERIES CONTENT FRAMEWORK: Gr 8-12

- LINES
- TRIANGLES
- QUADRILATERALS
- CIRCLES (Gr 11)
$(\mathrm{Gr} 8 \rightarrow 10)$

Gr 12?

Gr 12

- THEOREM OF PYTHAGORAS (Gr 8)
- SIMILAR $\Delta^{\mathbf{s}}$ (Gr 9)
- MIDPOINT THEOREM (Gr 10)

- THE PROPORTION THEOREM (Gr 12)

Ratio Proportion Area

QUESTION 8 60\%

8.1 In the diagram, O is the centre of the circle. 55\%

Use the diagram alongside to prove the theorem which states that the angle subtended by a chord at the centre of the circle is equal to twice the angle subtended by the same chord at the circumference, that is, prove that TÔP $=2 T \hat{K} P$.

8.2 In the diagram, O is the centre 59% of the circle and $A B C D$ is a cyclic quadrilateral. OB and OD are drawn.

If $\hat{O}_{1}=4 x+100^{\circ}$ and
$\hat{\mathrm{C}}=x+34^{\circ}$, calculate,
giving reasons, the size of x.

8.3 In the diagram, O is the centre 65% of the larger circle. OB is a diameter of the smaller circle. Chord $A B$ of the larger circle intersects the smaller circle at M and B .
8.3.1 Write down the size of OMB. Provide a reason.
8.3.2 If $A B=\sqrt{300}$ units and $O M=5$ units, calculate, giving reasons, the length of $O B$.

- Gr 12 Maths Toolkit: DBE Past Papers, p. 43
- TAS Website: www.theanswer.co.za
- Diagnostic Report: Questions/Memos/Comments
- 2023 Exam Reviews

QUESTION 9 44\%

In the diagram, $A B C D$ is a parallelogram with $A B=14$ units.
$A D$ is produced to E such that $A D: D E=4: 3$.
EB intersects DC in F.
$E B=21$ units.

9.1 Calculate, with reasons, the length of FB. 51\%
9.2 Prove, with reasons, that $\Delta \mathrm{EDF}||\mid \Delta \mathrm{EAB}$.

60\%
9.3 Calculate, with reasons, the length of FC.

20\%

QUESTION 10 18\%

In the diagram, PQRS is a cyclic quadrilateral such that $P Q=P R$.
The tangents to the circle through P and R meet $Q S$ produced at A. $R S$ is produced to meet tangent $A P$ at B. PS is produced to meet tangent $A R$ at C. $P R$ and $Q S$ intersect at M

Prove, giving reasons, that:
$10.1 \quad \hat{S}_{3}=\hat{S}_{4}$
29\%
10.2 SMRC is a cyclic quadrilateral.

16\%
10.3 $R P$ is a tangent to the circle passing through P,
$10 \% S$ and A at P.

[^0]
Problem Solving Questions

$A B C D$ is a parallelogram with $A D=A E=E B . D E=9 \mathrm{~cm}$ and $D C=15 \mathrm{~cm}$.

Determine the length of EC.
2.

GHJK is a square with L and M the midpoints of HJ and JK respectively.

Prove that $\mathrm{GL} \perp \mathrm{HM}$.
3.

P, Q, R and S lie on the circumference of circle O.
$\mathrm{PQ}=6 \mathrm{~cm}, \mathrm{ST}=4 \mathrm{~cm}$, and the radius of the circle is 5 cm .

Determine the area of quadrilateral PQRS.

\odot Geom, no tangents

- Gr 12 Maths Toolkit: DBE Past Papers, p. 17
- TAS Gr 12 Euclidean Geometry Video 2

Example 1 (DBE Nov 2018 Q9.2) 44\%

- In the diagram, a smaller circle ABTS and a bigger circle BDRT are given.
- BT is a common chord. Straight lines STD and ATR are drawn.
- Chords AS and DR are produced to meet in C, a point outside the two circles.
- BS and BD are drawn.
$\hat{\mathrm{A}}=x$ and $\hat{\mathrm{R}}_{1}=y$.
1.1 Name, giving a reason, another angle equal to:
(a) x
(b) y
(2)(2)
1.2 Prove that SCDB is a cyclic quadrilateral.
1.3 It is further given that $\hat{D}_{2}=30^{\circ}$ and ASTT $=100^{\circ}$.
 Prove that SD is not a diameter of circle BDS.
(4)

Proportionality

Example 2 (DBE Nov 2018 Q8.2) 59\%

- In the diagram, $\Delta \mathrm{AGH}$ is drawn.
- F and C are points on $A G$ and $A H$ respectively such that $A F=20$ units, $F G=15$ units and $C H=21$ units.
- D is a point on $F C$ such that $A B C D$ is a rectangle with $A B$ also parallel to $G H$.
- The diagonals of $A B C D$ intersect at M, a point on $A H$.
2.1 Explain why FC || GH.
2.2 Calculate, with reasons, the length of DM.

- Gr 12 Maths Toolkit:

DBE Past Papers, p. 17

- TAS Gr 12 Euclidean Geometry Video 5

Proportionality

Example 3 (DBE Nov 2020 Q8.2) 52\%

3. In $\triangle \mathrm{ABC}, \mathrm{F}$ and G are points on sides AB and AC respectively.
D is a point on GC such that $\hat{D}_{1}=\hat{B}$.
(a) If $A F$ is a tangent to the circle passing through points F, G and D, then prove, giving reasons, that $\mathrm{FG} \| \mathrm{BC}$.
(b) If it is further given that $\frac{A F}{F B}=\frac{2}{5}$,
$\mathrm{AC}=2 x-6$ and $\mathrm{GC}=x+9$,
then calculate the value of x.

Similarity

Example 4 (DBE Nov 2019 Q8.2) 25\%

- In the diagram, the diagonals of quadrilateral CDEF intersect at T .
- $E F=9$ units, $D C=18$ units, $E T=7$ units, $\mathrm{TC}=10$ units, $\mathrm{FT}=5$ units and $\mathrm{TD}=14$ units.

Prove, with reasons, that:
4.1 E $\mathrm{F} D=\mathrm{E}$ ĈD

4.2 D $\mathrm{F} C=\mathrm{DE} C$
(3)

- Gr 12 Maths Toolkit: DBE Past Papers, p. 22

Mixed

Example 5 (DBE Nov 2018 Q10) 31\%

- In the diagram, ABCD is a cyclic quadrilateral such that $\mathrm{AC} \perp \mathrm{CB}$ and $\mathrm{DC}=\mathrm{CB}$.
- AD is produced to M such that $A M \perp M C$.

Let $\hat{\mathrm{B}}=x$.
5.1 Prove that:

48\%
(a) MC is a tangent to the circle at C.
(b) $\Delta \mathrm{ACB}||\mid \triangle \mathrm{CMD}$
5.2 Hence, or otherwise, prove that:

18\%
(a) $\frac{C M^{2}}{D C^{2}}=\frac{A M}{A B}$
(6)
(b) $\frac{A M}{A B}=\sin ^{2} x$
(2)

- Gr 12 Maths Toolkit: DBE Past Papers, p. 17

- TAS Gr 12 Euclidean Geometry Video 7

Example 6 (DBE Nov 2020 Q10) 43\%

- In the diagram, a circle passes through D, B and E .
- Diameter ED of the circle is produced to C and $A C$ is a tangent to the circle at B.
- M is a point on $D E$ such that $A M \perp D E$.
- AM and chord BE intersect at F.
6.1 Prove, giving reasons, that:

55\%
(a) FBDM is a cyclic quadrilateral
(3)
(b) $\hat{\mathrm{B}}_{3}=\hat{\mathrm{F}}_{1}$
(c) $\triangle \mathrm{CDB}||\mid \triangle \mathrm{CBE}$
6.2 If it is further given that $C D=2$ units and $D E=6$ units, 26% calculate the length of:

(a) BC
(b) DB
(3)(4)

$\angle^{\text {s }}$, Lines, Δ^{s}

2.2 Calculate, with reasons, the values of x.
2.2.2

5. State whether the following pairs of triangles are congruent or similar, giving reasons for your choice.
5.2

9. $A B C D$ is a quadrilateral.
E is a point on $B C . P, Q, R$ and S are the midpoints of $A B, A E, D E$ and $D C$ respectively.

Prove that:
9.1 $\mathrm{PQ}|\mid \mathrm{RS}$
9.2 $P Q+Q R+R S=\frac{1}{2}(A D+B C)$

Quadrilaterals

7. Calculate the area of the kite alongside.

Gr 10 Maths 3-in-1

p. 7.6 Q7

7. Calculate the value of x giving reasons, given that $A B C D$ is a square and $B F P D=125^{\circ}$.

15.1 Make a neat copy of this sketch and fill in all the other angles in terms of x.

Reasons are not required.

15.2 Complete the following statement:
Δ ABE ||| $\Delta \ldots$. . ||| Δ. . .
15.3 If $B C=18 \mathrm{~cm}$ and $B E=12 \mathrm{~cm}$, calculate the length of
15.3.1 AE
15.3.2 $A B$ correct to two decimals.
15.4 Hence calculate the area of rectangle $A B C D$ to the nearest cm^{2}.

Gr 10 Maths 3-in-1

Circles

EXAMPLE 7

Don't be put off by this drawing!
Direct your focus to one situation at a time ©

Make statements, with reasons,

1. In \odot XPBA: about \hat{P}_{1} and \hat{B}_{1}
2. In $\odot A B Y Q:$ about \hat{B}_{1} and $A \hat{Q} Y$
3. In quadrilateral APTQ: about \hat{P}_{1} and $A \hat{Q} T$
4. What can you conclude about quadrilateral APTQ?

Mark the $\angle^{\text {s }}$ on the drawing as you proceed.

Gr 11 Maths 3-in-1 p. 9.16

EXAMPLE 8

Prove that PA is a tangent to $\odot \mathrm{M}$.

Gr 11 Maths 3-in-1
p. 9.25 Q14

Module 9b: Circle Geometry

- Notes
- Exercises
- Full Solutions

Proportion Theorem

Example 9

In the diagram, $\triangle A B C$ and $\triangle A C D$ are drawn. F and G are points on sides $A B$ and $A C$ respectively such that $A F=3 x$, $\mathrm{FB}=2 x, \mathrm{AG}=12 \mathrm{y}$ and $\mathrm{GC}=8 \mathrm{y} . \mathrm{H}, \mathrm{E}$ and K are points on side $A D$ such that $G H \| C K$ and $G E \| C D$.

1. Prove that:
1.1 FG || BC
$1.2 \frac{\mathrm{AH}}{\mathrm{HK}}=\frac{\mathrm{AE}}{\mathrm{ED}}$
(2)(3)
2. If it is further given that $A H=15$ and $E D=12$, calculate the length of EK .

Study and analyse the diagram

- Notice that there are $\mathbf{3} \Delta^{5}$ on which to focus.

And, in $\triangle A C D, 2$ pairs of || lines. Highlight these in colour! (And, the first question requires proof of || lines.)

- Clearly, only 2 theorems are involved:
the proportion theorem and its converse (theorem)
(Study these $\underline{\underline{2}}$ theorem statements well!)

$$
\text { Gr } 12 \text { Maths } 2-\mathrm{in}-1
$$

Level 3 \& 4 questions booklet p. 32

Gr 12 Maths Toolkit:

DBE Past Papers, p. 12 Q9

Worked Example 10

In $\triangle \mathrm{PQR}$ the lengths of $\mathrm{PS}, \mathrm{SQ}, \mathrm{PT}$ and TR are 3, 9, 2 and 6 units respectively.

Gr 12 Maths '3-in-1'

p. 1.47 (yet to be published)

1. Give a reason why $S T \| Q R$.
2. If $A B|\mid Q P$ and $R A: A Q=1: 3$, calculate the length of $T B$.

Similar $\Delta^{\mathbf{s}}$ vs.
 Proportion Theorem Application

(1) Find the values of x and y in the figure below.

2 Find x and y in the sketch below.

Note:
Distinguish between the applications of the similar $\Delta^{\mathbf{s}}$ and proportion theorems!

Similar Δ^{s}

EXAMPLE 11 (National November 2017 P2, Q10) 34\%

In the diagram, W is a point on the circle with centre O .
V is a point on OW .
Chord MN is drawn such that MV $=\mathrm{VN}$.
The tangent at W meets OM produced at T and ON produced at S .
(a) Give a reason why $\mathrm{OV} \perp \mathrm{MN}$.

44\%
(b) Prove that:

24\%
(i) $\mathrm{MN} \| \mathrm{TS}$
(ii) TMNS is a cyclic quadrilateral
(iii) OS.MN = 2ON.WS

'A Mix' from DBE Nov 2021

Worked Example 12 63\%

9. In the diagram, PQRS is a cyclic quadrilateral. PS is produced to W .
TR and TS are tangents to the circle at R and S respectively.
$\hat{T}=78^{\circ}$ and $\hat{Q}=93^{\circ}$.
9.1 Give a reason why $\mathrm{ST}=\mathrm{TR}$.

68\%
9.2 Calculate, giving reasons, the size of: 62\%

9.2 .1	\hat{S}_{2}	9.2 .2	\hat{s}_{3}	$(2)(2)[5]$

Gr 12 Maths Toolkit:
DBE Past Papers, p. 32

Worked Example 13 24\%

10. In the diagram, $B E$ and $C D$ are diameters of a circle having M as centre. Chord $A E$ is drawn to cut $C D$ at F. $\mathbf{A E} \perp \mathbf{C D}$ Let $\hat{C}=x$.
10.1 Give a reason why $\mathrm{AF}=\mathrm{FE}$. 47\%
10.2 Determine, giving reasons, the size 37% of \hat{M}_{1} in terms of x.
10.3 Prove, giving reasons, that AD is 37% a tangent to the circle passing through A, C and F.
10.4 Given that $C F=6$ units and

9\% $A B=24$ units, calculate, giving reasons, the length of $A E$.

Gr 12 Maths Toolkit:
DBE Past Papers, p. 32

Worked Example 14 34\%
11.1 In the diagram, chords DE, EF and DF are 57% drawn in the circle with centre O.

KFC is a tangent to the circle at F.

Prove the theorem which states that DF̂K $=\hat{E}$.

Gr 12 Maths Toolkit: DBE Past Papers, p. 32
11.2 In the diagram, PK is a tangent to the
33% circle at K. Chord $L S$ is produced to P. N and M are points on KP and SP respectively such that MN || SK. Chord KS and LN intersect at T.
11.2.1 Prove, giving reasons, that:
(a) $\hat{\mathrm{K}}_{4}=\mathrm{NML}$
(b) KLMN is a cyclic quadrilateral.
11.2.2 Prove, giving reasons, that Δ LKN ||| Δ KSM.
(5)
11.2.3 If LK $=12$ units and $3 K N=4 S M$, determine the length of KS.
11.2.4 If it is further given that NL = 16 units, $L S=13$ units and $\mathrm{KN}=8$ units, determine, with reasons, the length of LT. (4)

SERIES Your Key to Exam Success
The converse theorem statements have been highlighted in yellow

The adjacent angles on a straight line are supplementary.	$L^{\text {s }}$ on a str linep			
If the adjacent angles are supplementary, the outer arms of these angles form a straight line.	adj $\angle^{\text {s }}$ supp			
The adjacent angles in a revolution add up to 360°.	$\angle^{\text {s }}$ around a pt $\mathrm{OR} \angle^{\text {s }}$ in a rev			
Vertically opposite angles are equal.	vert opp $\angle^{\text {s }}$			
If $A B \\| C D$, then the alternate angles are equal.	alt $\angle^{\text {s }}$; $A B \\| C D$			
If $A B \\| C D$, then the corresponding angles are equal.	corresp $\angle^{\text {s }} ; \mathrm{AB} \\| \mathrm{CD}$			
If $A B \\| C D$, then the co-interior angles are supplementary.	co-int $\angle^{\text {s }} ;{ }^{\text {a }}\\| \\| C D$			
If the alternate angles between two lines are equal, then the lines are parallel.	alt $\angle^{s}=$			
If the corresponding angles between two lines are equal, then the lines are parallel.	corresp $\angle^{\text {s }}=$			
If the co-interior angles between two lines are supplementary, then the lines are parallel.	co-int $\angle^{\text {s }}$ supp			

TRIANGLES

The interior angles of a triangle are supplementary.
The exterior angle of a triangle is equal to the sum of the interior opposite angles.
\angle sum in $\triangle \mathbf{O R}$ sum of \angle^{s} in Δ OR int \angle^{s} in \triangle
ext \angle of Δ
The angles opposite the equal sides in an isosceles triangle are equal.
The sides opposite the equal angles in an isosceles triangle are equal.

In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.

If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.

SSS

If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.

If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.

If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the length of the third side.

Midpt Theorem

The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.
$2^{\text {nd }}$ side
A line drawn parallel to one side of a triangle divides the other two sides proportionally.

If a line divides two sides of a triangle in the same proportion, then the line is parallel to the third side.

If two triangles are equiangular, then the corresponding sides are in proportion (and consequently the triangles are similar).

If the corresponding sides of two triangles are proportional, then the triangles are equiangular (and consequently the triangles are similar).

> If triangles (or parallelograms) are on the same base (or on bases of equal length) and between the same parallel lines, then the triangles (or parallelograms) have equal areas.
same base; same height OR equal bases; equal height

QUADRILATERALS

The interior angles of a quadrilateral add up to 360°
sum of \angle^{s} in quad

The opposite sides of a parallelogram are parallel.
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.

| The opposite sides of a parallelogram are equal in length. | opp sides of \||m |
| :---: | :---: |
| If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram. | opp sides of quad are $=\mathbf{O R}$ converse opp sides of a parm |
| The opposite angles of a parallelogram are equal. | opp $\angle^{\text {s }}$ of $\\|$ m |
| If the opposite angles of a quadrilateral are equal then the quadrilateral is a parallelogram. | opp $\angle^{\text {s }}$ of quad are $=\mathbf{O R}$ converse opp angles of a parm |
| The diagonals of a parallelogram bisect each other. | diag of \||m |
| If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. | diags of quad bisect each other OR
 converse diags of a parm |
| If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram. | pair of opp sides = and \|| |
| The diagonals of a parallelogram bisect its area. | diag bisect area of \\|m |
| The diagonals of a rhombus bisect at right angles. | diags of rhombus |
| The diagonals of a rhombus bisect the interior angles. | diags of rhombus |
| All four sides of a rhombus are equal in length. | sides of rhombus |
| All four sides of a square are equal in length. | sides of square |
| The diagonals of a rectangle are equal in length. | diags of rect |
| The diagonals of a kite intersect at right-angles. | diags of kite |
| A diagonal of a kite bisects the other diagonal. | diag of kite |
| A diagonal of a kite bisects the opposite angles. | diag of kite |

CIRCLES
GROUP I

The tangent to a circle is perpendicular
to the radius/diameter of the circle at the point of contact.
tan \perp radius
$\tan \perp$ diameter

If a line is drawn perpendicular to a radius/diameter at the point where the radius/diameter meets the circle, then the line is a tangent to the circle.

The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord.

The line drawn from the centre of a circle perpendicular to a chord bisects line from centre \perp to chord

The perpendicular bisector of a chord passes through the centre of perp bisector of chord the circle.

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)

> No converse

The angle subtended by the diameter at the circumference of the circle is 90°.

If the angle subtended by a chord at the circumference of the circle is 90°, then the chord is a diameter.
$\angle^{\text {s }}$ in semi circle OR diameter subtends right angle

OR \angle in $1 / 2 \odot$
chord subtends 90° OR
converse $\angle^{\text {s }}$ in semi circle

GROUP II

Angles subtended by a chord of the circle, on the same side of the chord, are equal

If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic.
(This can be used to prove that the four points are concyclic).

Equal chords subtend equal angles at the circumference of the circle.
equal chords; equal $\angle^{\text {s }}$

Equal chords subtend equal angles at the centre of the circle.
equal chords; equal $\angle^{\text {s }}$

Equal chords in equal circles subtend equal angles at the circumference of the circles.
equal circles; equal chords; equal $\angle^{\text {s }}$

Equal chords in equal circles subtend equal angles at the centre of the circles.
(A and B indicate the centres of the circles)
line subtends equal $\angle^{\text {s }}$ OR
converse \angle^{s} in the same seg

GROUP III

The opposite angles of a cyclic quadrilateral are supplementary (i.e. x and y are supplementary)

If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.

The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.
opp $\angle^{\text {s }}$ quad sup OR
converse opp $\angle^{\text {s }}$ of cyclic quad
ext \angle of cyclic quad
ext $\angle=$ int opp \angle
OR
converse ext \angle of cyclic quad

GROUP IV

Two tangents drawn to a circle from the same point outside the circle are equal in length $(A B=A C)$

Tans from common pt

OR

Tans from same pt

The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.

If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle. (If $x=b$ or if $y=a$ then the OR
\angle between line and chord

Euclidean Geometry

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 7)
\# 1: Lines, angles \& triangles: revision • vocabulary \& facts
\# 2: Quadrilaterals: revision • definitions • theorems • areas
$7.1 \rightarrow 7.7$
\# 3: Midpoint theorem
$7.8 \rightarrow 7.15$
\# 4: Polygons: definitions \& types • interior angles • exterior angles
$7.16 \rightarrow 7.17$

Note: The Gr 10 Exemplar Exams and Memos are at the end of the book

Gr 11 Maths 3-in-1 (Module 9)

\# 1: Revision from earlier grades
$9.1 \rightarrow 9.5$
\# 2: Circle Geometry
$9.6 \rightarrow 9.26$
Note: The Gr 11 Exemplar Exams and Memos are at the end of the book

Gr 12 Maths 2-in-1 (Module 10)

\# 1: Circle Geometry
\# 2: Proportion Theorem
\# 3: Similar Triangles
\# 4: Mixed
Back pages: Circle Geometry, Proportion and Similar Triangles Theorem PROOFS
Grouping of Circle Geometry Theorems
Converse Theorems in Circle Geometry
Theorem Statements \& Acceptable Reasons

See Challenging Questions booklet:
pages $29 \rightarrow 38$

See the Topic Guide on p. 148 for further exam practice.

$$
36 \rightarrow 40
$$

$40 \rightarrow 42$

$$
42 \rightarrow 43
$$

$$
43
$$

i \rightarrow iii
viii
ix $\mathrm{x} \rightarrow$ xii

Gr 12 Maths Toolkit: DBE Past Papers

Back pages: Circle Geometry, Proportion and Similar Triangles Theorem PROOFS Grouping of Circle Geometry Theorems
Theorem Statements \& Acceptable Reasons
i \rightarrow iii
xiii
xiv \rightarrow xvi

Theory without practice is empty

Practice without theory

 is blindPhilosopher, Immanuel Kant (18 ${ }^{\text {th }}$ century philosopher)

[^0]: Copyright © The Answer Series

