

SOLUTIONS

A Warm-up Example DBE May 2024: Q10

10.1 TODF is a cyclic quadrilateral

(4)

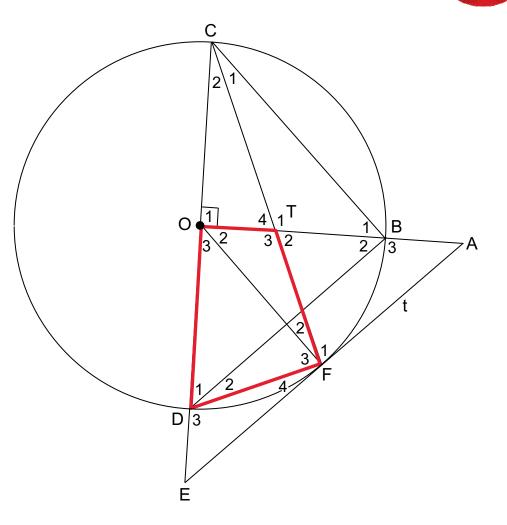
Solutions

10.1 $\hat{TOD} = 90^{\circ} \dots AO \perp CE$

& DFT = 90° ... \angle in semi- \odot

 \therefore TODF is a cyclic quad $\dots \frac{converse\ ext\ \angle\ of}{cyclic\ quad}$

 $for: converse opp <math>\angle^s of$ cyclic quad



10.2
$$\hat{D}_3 = \hat{T}_1$$
 (3)

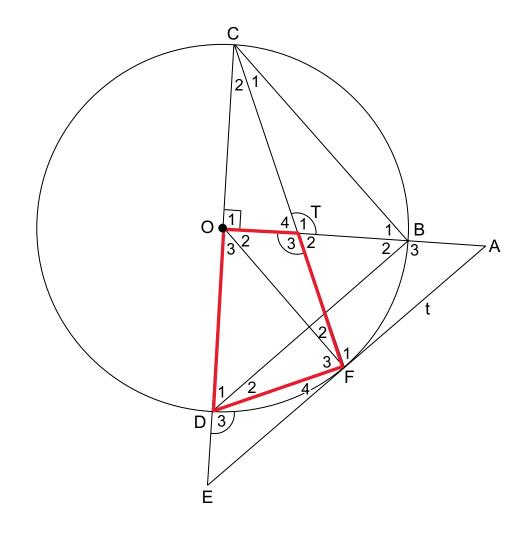
Solutions

10.2 Let $\hat{D}_3 = x$

$$\therefore \hat{T}_3 = x \qquad \dots ext \angle of cyclic quad$$

$$\therefore \hat{\mathsf{T}}_1 = x \qquad \dots \text{ vert opp } \angle^s =$$

$$\therefore$$
 $\hat{D}_3 = \hat{T}_1 \blacktriangleleft$



Solutions

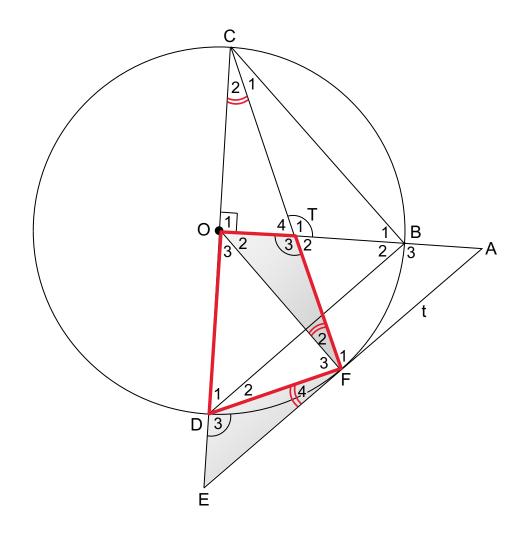
10.3 Δ^{s} TFO and Δ DFE

(1) $\hat{T}_3 = \hat{D}_3$... proved in 10.2

(2) $\hat{F}_4 = \hat{C}_2$... tan chord theorem = \hat{F}_2 ... \angle^s opp equal sides (radii)

∴ Δ TFO ||| Δ DFE \blacktriangleleft ... equiangular Δ^s





10.4 If $\hat{B}_2 = \hat{E}$, prove that DB || EA. (2)

Solutions

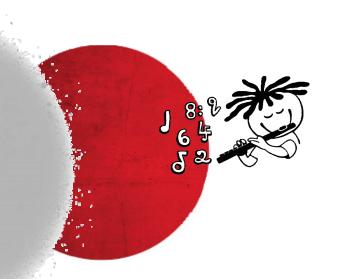
10.4 Let $\hat{E} = y$

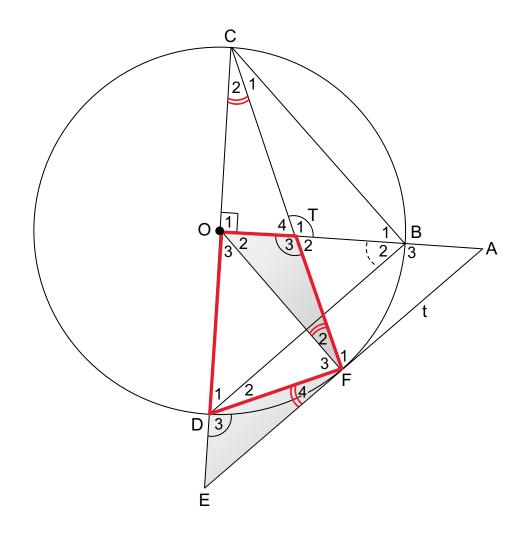
 $\therefore \hat{B}_2 = y \qquad \dots given$

 $\therefore \hat{D}_1 = y \qquad \dots \angle^s opp \ equal \ sides \ (radii)$

 $\hat{D}_1 = \hat{E}$

∴ DB || EA \triangleleft ... corresp \angle ^s =





10.5 Prove that DO =
$$\frac{\text{TO.FE}}{\text{AB}}$$
 (5)

Solutions

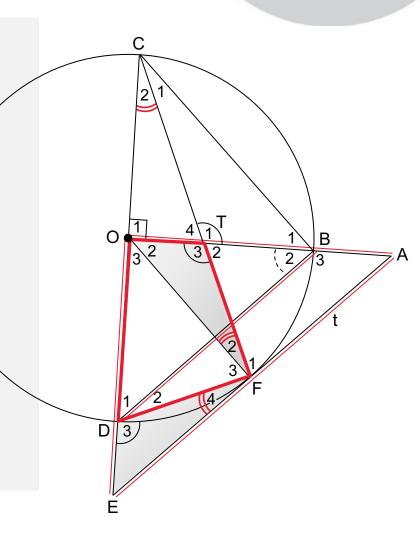
10.5 In $\triangle OEA$: $\frac{DO}{ED} = \frac{BO}{AB} \dots DB \mid\mid EA \ (in 10,4); \ prop \ theorem$

$$\therefore DO = \frac{BO.ED}{AB} \dots$$

Now, in Δ^s TFO & DFE: $\frac{TO}{ED} = \frac{FO}{FE} \left(= \frac{TF}{DF} \right) \dots \frac{||| \Delta^s}{in \ 10.3}$

But FO = BO ... radii

Substitute 2 in 1:



Problem Solving Solutions

1. Let
$$\widehat{ADE} = x$$

$$\therefore$$
 AÊD = x

$$\therefore \widehat{DAE} = 180^{\circ} - 2x \qquad \angle \text{ sum of } \Delta$$

$$\therefore$$
 EBC = $2x$

 \angle s opp = sides

$$AD = BC$$

opp sides of parm

$$\therefore BE = BC$$

$$\widehat{BEC} + \widehat{BCE} = 180^{\circ} - 2x$$

$$\angle$$
 sum of Δ

$$\therefore \hat{BEC} = 90^{\circ} - x$$

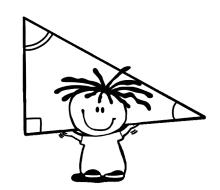
$$\angle$$
s opp = sides

$$\therefore$$
 DÊC = 90°

∠s on a straight line

$$\therefore$$
 EC = 12 cm

Pythagoras



2. In \triangle GHL and \triangle HJM

$$1. GH = HJ$$

sides of square

$$2. HL = JM$$

sides of square and L and M are midpoints

3.
$$\widehat{GHL} = \widehat{HJM}$$

angles of square

$$\therefore \Delta GHL \equiv \Delta HJM$$

SAS

Let
$$\widehat{HGL} = x$$

$$\therefore \hat{GLH} = 90^{\circ} - x$$

 \angle sum of \triangle

$$J\widehat{H}M = x$$

 $\Delta GHL \equiv \Delta HJM$

$$\therefore$$
 H $\hat{N}L = 90^{\circ}$

 \angle sum of Δ

$$\therefore$$
 GL \perp HM

3.
$$PO = OS = 5 \text{ cm}$$

radii

$$ST = TQ$$

converse midpoint theorem

$$QP = 6$$
 cm, $QS = 8$ cm and $PS = 10$ cm

$$\therefore \hat{PQS} = 90^{\circ}$$

converse Pythagoras

$$OT = 3 \text{ cm}$$

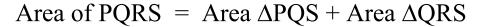
midpoint theorem

$$\therefore$$
 TR = 2 cm

OR is a radius

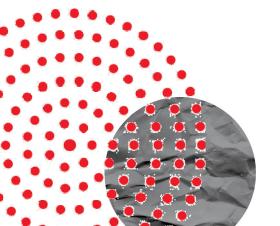
$$\hat{RTQ} = 90^{o}$$

alt ∠s; PQ || OR



$$\therefore \text{ Area} = \frac{1}{2} \times 6 \times 8 + \frac{1}{2} \times 8 \times 2$$

$$\therefore$$
 Area = 32 cm²



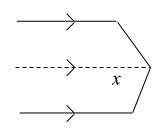
MEMOS: \angle ^s, Lines, Δ ^s

$$2.2.2 \quad 120^{\circ} + 110^{\circ} + x = 2(180^{\circ})$$

$$\therefore$$
 230° + x = 360° ... 2 prs. co-int. \angle ^s

$$x = 130^{\circ}$$

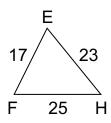
|| lines

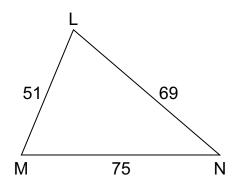


Gr 10 Maths 3-in-1 p. 7.19 Q2.2.2

5.2 Similar; prop. sides

... [17:23:25 = 51:69:75]





Gr 10 Maths 3-in-1 p. 7.19 Q5.2

9.

This drawing looks confusing at first. But, look at each triangle separately – the 'middle' one is just upside down! - and apply the facts to each, one at a time.

9.1 In ∆ABE: P & Q are midpoints of AB & AE

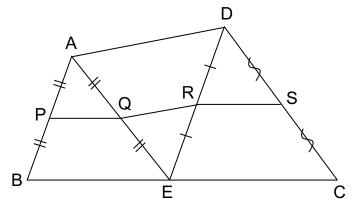
∴ PQ || BE(C) . . . *midpt thm*

Similarly, in ∆DEC: RS || (B)EC

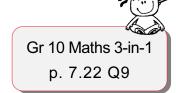
∴ PQ | RS . . . both are parallel to BEC

9.2 In Δ^{s} ABE, AED and DEC:

$$PQ + QR + RS = \frac{1}{2}BE + \frac{1}{2}AD + \frac{1}{2}EC = \frac{1}{2}(AD + BE + EC)$$



$$= \frac{1}{2}(AD + BC)$$



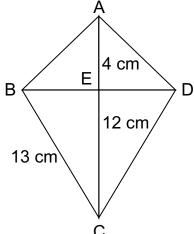
Quadrilaterals

7. $BE \perp AC$... diagonals of a kite

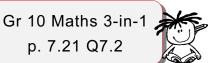
BE = 5 cm $\dots 5:12:13 \Delta$; Pythag.

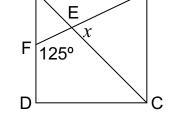
Area of kite = $2.\frac{1}{2}(12 + 4).5$... $2 \times \Delta ACD$ = 80 cm^2

OR: $\frac{1}{2}$ product of diagonals = $\frac{1}{2}$ (10)(16)cm² ... why?

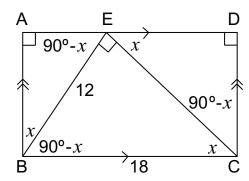


- 7.2 $\hat{D} = 90^{\circ} \dots \angle of square$
 - ∴ DĈA = 45° ... diag. bisects ∠
 - ∴ FÊC = 100° ... sum of int. \angle ^s of quad.
 - $\therefore x = 80^{\circ} \quad \dots \leq^{s} on \ a$ str. line





15.1



15.2 $\triangle ABE \parallel \triangle ECB \parallel \triangle DEC$

NB: The order of the letters!

15.3.1 ΔABE ||| ΔECB

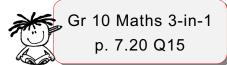
$$\Rightarrow \frac{AE}{BE} = \frac{BE}{BC}$$
 ... sides in proportion

×BE) : AE =
$$\frac{BE^2}{BC} = \frac{12^2}{18} = 8 \text{ cm}$$

15.3.2 AB² = 12² - 8² = 80 ... Theorem of Pythag
∴ AB =
$$\sqrt{80}$$

≈ 8,94 cm

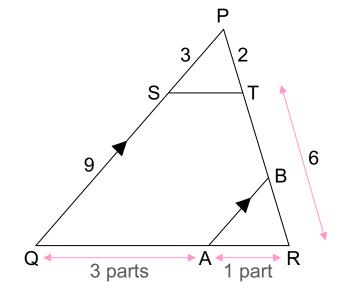
15.4 Area of rect. ABCD =
$$8,94 \times 18 \simeq 161 \text{ cm}^2$$



1. In
$$\triangle PQR$$
: $\frac{PS}{SQ} = \frac{3}{9} = \frac{1}{3}$ & $\frac{PT}{TR} = \frac{2}{6} = \frac{1}{3}$

$$\therefore \frac{PS}{SQ} = \frac{PT}{TR}$$

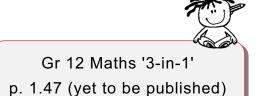
∴ ST || QR . . . converse of proportion thm



2. In
$$\triangle RPQ$$
: $\frac{RB}{RP} = \frac{RA}{RQ} = \frac{1}{4}$... proportion theorem; $AB \mid\mid QP$

$$\therefore RB = \frac{1}{4}RP$$

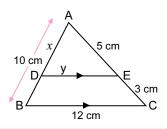
$$= 2 \text{ units} \dots RP = PT + TR = 8 \text{ units}$$



Similar As vs.

Proportion Theorem Application

Find the values of x and y in the figure alongside.



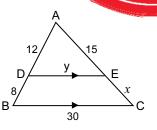
Answer

- In $\triangle ABC$: $\frac{x}{10} = \frac{5}{8}$... $DE \parallel BC$; proportion theorem \times 10) $\therefore x = 6\frac{1}{4}$ cm \triangleleft
- $\triangle ADE \parallel \triangle ABC$ $\frac{y}{12} = \frac{5}{8}$... $\frac{DE}{BC} = \frac{AE}{AC}$; proportional sides \times 12) \therefore y = $7\frac{1}{2}$ cm \triangleleft

Note:

Distinguish between the applications of the similar Δ^{s} and proportion theorems! (See next column.)

Find *x* and *y* in the sketch alongside



The Proportion theorem (finding x)

In
$$\triangle ABC$$
: DE || BC

The unknown $\Rightarrow \frac{x}{15} = \frac{8}{12}$

× 15) $\therefore x = 10 \text{ units}$

The proportion theorem does NOT refer to the lengths of the parallel lines, only to AB and AC and their segments.

► Similar triangles theorem (finding y)

In Λ^{s} ADE and ABC:

- (1) Â is common
- (2) $\hat{ADE} = \hat{B}$... corresponding \angle^s ; $DE \parallel BC$
- [& $\triangle D = \hat{C}$... corresponding $\angle S = DE || BC$]

In the same figure above, ΔABC can be seen as an enlargement of $\triangle ADE$ and the sides of these triangles are proportional.

$$\therefore \ \frac{y}{30} = \frac{12}{12 + 8} \ \left(or \ \frac{15}{15 + 10} \right)$$

∴ ∆ADE ||| ∆ABC ... equiangular Δ^s

$$\therefore \frac{DE}{BC} = \frac{AD}{AB} \text{ or } \frac{AE}{AC}$$

$$\therefore \frac{y}{30} = \frac{12}{20}$$

$$\therefore \frac{DE}{BC} = \frac{AD}{AB} \text{ or } \frac{AE}{AC} \qquad \dots \qquad Note: \quad \frac{DE}{BC} \neq \frac{AD}{DB} \text{ or } \frac{AE}{EC}$$

because BC is a side of $\triangle ABC$, while DB and EC are not.

$$\times$$
 30) : y = 18 units

It is only by using the similarity of the triangles, that we can relate the lengths of the parallel sides to the lengths of the other 2 sides of the triangles.

