SOLUTIONS

A Warm-up Example DBE May 2024: Q10

10.1 TODF is a cyclic quadrilateral

Solutions

10.1 TÔD $=90^{\circ} \ldots A O \perp C E$
\& DFT $=90^{\circ} \quad \ldots \angle$ in semi $-\odot$
\therefore TODF is a cyclic quad converse ext \angle of cyclic quad

$$
\binom{\text { or: converse opp } \angle^{s} \text { of }}{\text { cyclic quad }}
$$

(4)

$10.2 \hat{D}_{3}=\hat{T}_{1}$
(3)

Solutions

10.2 Let $\hat{D}_{3}=x$

$$
\begin{aligned}
& \therefore \hat{\mathrm{T}}_{3}=x \quad \ldots \text { ext } \angle \text { of cyclic quad } \\
& \therefore \hat{\mathrm{T}}_{1}=x \quad \ldots \text { vert opp } \angle^{s}= \\
& \therefore \hat{\mathrm{D}}_{3}=\hat{\mathrm{T}}_{1}<
\end{aligned}
$$

10.3Δ TFO ||| Δ DFE
(5)

Solutions

$10.3 \Delta^{\mathrm{s}} \mathrm{TFO}$ and $\triangle \mathrm{DFE}$
(1) $\hat{\mathrm{T}}_{3}=\hat{\mathrm{D}}_{3} \quad \ldots$ proved in 10.2
(2) $\hat{\mathrm{F}}_{4}=\hat{\mathrm{C}}_{2} \quad \ldots$ tan chord theorem
$=\hat{F}_{2} \ldots \angle^{s}$ opp equal sides (radii)
$\therefore \Delta$ TFO ||| Δ DFE $<\ldots$ equiangular Δ^{s}

10.4 If $\hat{\mathrm{B}}_{2}=\hat{\mathrm{E}}$, prove that $\mathrm{DB}|\mid \mathrm{EA}$.
(2)

Solutions

$$
\begin{aligned}
& 10.4 \text { Let } \hat{E}=y \\
& \therefore \hat{\mathrm{~B}}_{2}=\mathrm{y} \quad \ldots \text { given } \\
& \therefore \hat{\mathrm{D}}_{1}=\mathrm{y} \quad \ldots \angle^{\text {s }} \text { opp equal sides (radii) } \\
& \therefore \hat{\mathrm{D}}_{1}=\hat{\mathrm{E}} \\
& \therefore \mathrm{DB}\left|\mid \mathrm{EA}<\ldots \text { corresp } \angle^{s}=\right.
\end{aligned}
$$

Solutions

10.5 In $\triangle \mathrm{OEA}: \frac{\mathrm{DO}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{AB}} \ldots D B \| E A$ (in 10,4); prop theorem

$$
\therefore D O=\frac{B O . E D}{A B} \ldots \text { (1) }
$$

Now, in $\Delta^{\mathrm{s}} \mathrm{TFO} \& \mathrm{DFE}: \frac{\mathrm{TO}}{\mathrm{ED}}=\frac{\mathrm{FO}}{\mathrm{FE}}\left(=\frac{\mathrm{TF}}{\mathrm{DF}}\right) \ldots{ }_{\text {in }} 10.3 \Delta^{s}$

$$
\therefore \text { FO.ED }=\text { TO.FE }
$$

But $\mathrm{FO}=\mathrm{BO} \quad .$. radii

$$
\begin{equation*}
\therefore \mathrm{BO} . \mathrm{ED}=\mathrm{TO} . \mathrm{FE} \tag{2}
\end{equation*}
$$

Substitute (2) in (1):

$$
\therefore \mathrm{DO}=\frac{\mathrm{BO} \cdot \mathrm{ED}}{\mathrm{AB}}<
$$

Problem Solving Solutions

1. Let $\mathrm{A} \widehat{\mathrm{D}}=x$

$$
\begin{array}{rlrl}
\therefore & \mathrm{AE} \mathrm{D}=x & \angle \mathrm{~s} \text { opp }=\text { sides } \\
\therefore \mathrm{DAE} & =180^{\circ}-2 x & & \angle \mathrm{sum} \text { of } \Delta \\
\therefore \mathrm{EBC}=2 x & & \text { co-int } \angle \mathrm{s} ; \mathrm{AD} \| \mathrm{BC} \\
\mathrm{AD}=\mathrm{BC} & & \text { opp sides of parm } \\
\therefore \mathrm{BE}=\mathrm{BC} & \\
\mathrm{BEC}+\mathrm{BCE}=180^{\circ}-2 x & & \angle \text { sum of } \Delta \\
\therefore \mathrm{BECC}=90^{\circ}-x & & \angle \mathrm{~s} \text { opp }=\text { sides } \\
\therefore \mathrm{DECC} & =90^{\circ} & & \angle \mathrm{s} \text { on a straight line } \\
& \therefore \mathrm{EC}=12 \mathrm{~cm} & & \text { Pythagoras }
\end{array}
$$

2. In $\Delta \mathrm{GHL}$ and $\Delta \mathrm{HJM}$
3. $\mathrm{GH}=\mathrm{HJ}$
4. $\mathrm{HL}=\mathrm{JM}$
5. $\mathrm{GH} \mathrm{L}=\mathrm{HJ} \mathrm{M}$
$\therefore \Delta \mathrm{GHL} \equiv \Delta \mathrm{HJM}$

Let $\mathrm{H} \widehat{\mathrm{G}} \mathrm{L}=x$
\therefore GÊH $=90^{\circ}-x \quad \angle \operatorname{sum}$ of Δ
$\mathrm{JHM}=x \quad \Delta \mathrm{GHL} \equiv \Delta \mathrm{HJM}$
$\therefore \mathrm{HNL}=90^{\circ} \quad \angle \operatorname{sum}$ of Δ
$\therefore \mathrm{GL} \perp \mathrm{HM}$
sides of square
sides of square and L and M are midpoints
angles of square
SAS

$$
\text { 3. } \begin{array}{ll}
\mathrm{PO}=\mathrm{OS}=5 \mathrm{~cm} & \text { radii } \\
\mathrm{ST}=\mathrm{TQ} & \text { converse midpoint theorem } \\
\mathrm{QP}=6 \mathrm{~cm}, \mathrm{QS}=8 \mathrm{~cm} \text { and } \mathrm{PS}=10 \mathrm{~cm} \\
\therefore \mathrm{PQS}=90^{\circ} & \text { converse Pythagoras } \\
\mathrm{OT}=3 \mathrm{~cm} & \text { midpoint theorem } \\
\therefore \mathrm{TR}=2 \mathrm{~cm} & \text { OR is a radius } \\
\mathrm{RTQ}=90^{\circ} & \text { alt } \angle \mathrm{s} ; \mathrm{PQ} \| \mathrm{OR}
\end{array}
$$

Area of PQRS $=$ Area $\triangle \mathrm{PQS}+$ Area $\triangle \mathrm{QRS}$

$$
\begin{aligned}
& \therefore \text { Area }=\frac{1}{2} \times 6 \times 8+\frac{1}{2} \times 8 \times 2 \\
& \therefore \text { Area }=32 \mathrm{~cm}^{2}
\end{aligned}
$$

2.2.2 $120^{\circ}+110^{\circ}+x=2\left(180^{\circ}\right)$

$$
\begin{aligned}
\therefore 230^{\circ}+x & =360^{\circ} & \ldots 2 \text { prs. co-int. } \angle^{s} \\
\therefore x & =130^{\circ} & \| \text { lines }
\end{aligned}
$$

Gr 10 Maths 3-in-1
p. 7.19 Q2.2.2
5.2 Similar; prop.sides

$$
\ldots[17: 23: 25=51: 69: 75]
$$

Gr 10 Maths 3-in-1 p. 7.19 Q5.2
9.

This drawing looks confusing at first. But, look at each triangle separately - the 'middle' one is just upside down! - and apply the facts to each, one at a time.
9.1 In $\triangle \mathrm{ABE}: \quad \mathrm{P} \& \mathrm{Q}$ are midpoints of AB \& $A E$
$\therefore \mathrm{PQ}|\mid \mathrm{BE}(\mathrm{C}) \quad .$. midpt thm
Similarly, in \triangle DEC: RS || (B)EC
$\therefore P Q \| R S .$. both are parallel to BEC
$9.2 \ln \Delta^{\mathrm{s}} \mathrm{ABE}, \mathrm{AED}$ and DEC :
$P Q+Q R+R S=\frac{1}{2} B E+\frac{1}{2} A D+\frac{1}{2} E C=\frac{1}{2}(A D+B E+E C)$

$$
=\frac{1}{2}(A D+B C)
$$

Gr 10 Maths 3-in-1 p. 7.22 Q9

Quadrilaterals

$7.2 \hat{\mathrm{D}}=90^{\circ} \ldots<$ of square
\therefore DĈA $=45^{\circ} \quad \ldots$ diag. bisects \angle
\therefore FEEC $=100^{\circ} \ldots$ sum of int. \angle^{s} of quad.

$$
\therefore x=80^{\circ} \quad \ldots \angle^{s} \text { on } a
$$ str. line

Gr 10 Maths 3-in-1

p. 7.21 Q7.2

15.1

15.2 $\Delta \mathrm{ABE}|||\triangle \mathrm{ECB}||| \triangle \mathrm{DEC}$

NB: The order of the letters!
15.3.1 $\Delta \mathrm{ABE}||\mid \triangle \mathrm{ECB}$
$\Rightarrow \frac{A E}{B E}=\frac{B E}{B C} \quad \ldots$ sides in proportion

$$
\times B E) \quad \therefore A E=\frac{B E^{2}}{B C}=\frac{12^{2}}{18}=8 \mathrm{~cm}
$$

15.3.2 $A B^{2}=12^{2}-8^{2}=80 \ldots$ Theorem of Pythag

$$
\begin{aligned}
\therefore A B & =\sqrt{80} \\
& \simeq 8,94 \mathrm{~cm}
\end{aligned}
$$

15.4 Area of rect. $A B C D=8,94 \times 18 \simeq 161 \mathrm{~cm}^{2}$

Worked Example 10

1. $\operatorname{In} \triangle \mathrm{PQR}: \quad \frac{\mathbf{P S}}{\mathbf{S Q}}=\frac{3}{9}=\frac{1}{3} \quad \& \quad \frac{\mathbf{P T}}{\mathbf{T R}}=\frac{2}{6}=\frac{1}{3}$

$$
\therefore \frac{\mathbf{P S}}{\mathbf{S Q}}=\frac{\mathbf{P T}}{\mathbf{T R}}
$$

$\therefore \mathrm{ST} \| \mathrm{QR}<\ldots$ converse of proportion thm

2. In $\triangle \mathrm{RPQ}: \frac{\mathbf{R B}}{\mathbf{R P}}=\frac{\mathrm{RA}}{\mathrm{RQ}}=\frac{\mathbf{1}}{\mathbf{4}} \quad \ldots$ proportion theorem ; $A B \| Q P$

$$
\begin{array}{rlrl}
\therefore \mathrm{RB} & =\frac{1}{4} \mathrm{RP} & R A: A Q=1: 3 \\
& =2 \text { units } \ldots R P=P T+T R=8 \text { units }
\end{array}
$$

Gr 12 Maths '3-in-1'
p. 1.47 (yet to be published)
$\therefore \mathrm{TB}=4$ units

Similar $\Delta^{\mathbf{s}}$ vs. Proportion Theorem Application

1
Find the values of x and y in the figure alongside.

Answer

- $\operatorname{In} \triangle \mathrm{ABC}: \frac{x}{10}=\frac{5}{8}$
.. $D E \| B C$; proportion theorem
$\times 10) \quad \therefore x=6 \frac{1}{4} \mathrm{~cm}<$
- $\triangle \mathrm{ADE}\left|\left|\left\lvert\, \triangle \mathrm{ABC} \Rightarrow \frac{\mathrm{y}}{12}=\frac{5}{8} \quad \ldots \frac{D E}{B C}=\frac{A E}{A C}\right.\right.\right.$; proportional sides

$$
\times 12) \quad \therefore y=7 \frac{1}{2} \mathrm{~cm}<
$$

Note:

Distinguish between the applications of the similar $\Delta^{\mathbf{s}}$ and proportion theorems!
(See next column.)

2
Find x and y in the sketch alongside

- The Proportion theorem (finding x)

In $\triangle A B C: D E \| B C$

The
unknown

$\times 15) \quad \therefore x=10$ units
The proportion theorem does NOT refer to the lengths of the parallel lines, only to $A B$ and $A C$ and their segments.

- Similar triangles theorem (finding y)

In $\Delta^{\mathrm{s}} \mathrm{ADE}$ and ABC :
(1) \hat{A} is common
(2) $\mathrm{A} \hat{D} E=\hat{\mathrm{B}} \quad \ldots$ corresponding $\angle^{s} ; D E \| B C$
$\left[\& \mathrm{AEAD}=\hat{\mathrm{C}} \ldots\right.$ corresponding $\left.\angle^{s} ; D E \| B C\right]$

In the same figure above, $\triangle A B C$ can be seen as an enlargement of $\triangle A D$ and the sides of these triangles are proportional. $\frac{y}{30}=\frac{12}{\mathbf{1 2 + 8}}\left(\right.$ or $\left.\frac{15}{\mathbf{1 5 + 1 0}}\right)$
$\therefore \triangle A D E||\mid \triangle A B C$
. . . equiangular Δ^{s}

$$
\begin{aligned}
& \frac{D E}{B C}=\frac{A D}{A B} \text { or } \frac{A E}{A C} \\
& \frac{y}{30}=\frac{12}{20}
\end{aligned}
$$

$$
\text { Note: } \frac{D E}{B C} \neq \frac{A D}{D B} \text { or } \frac{A E}{E C}
$$

$$
\text { because } B C \text { is a side of } \triangle A B C \text {, }
$$

while DB and EC are not.
$\times 30$)

It is only by using the similarity of the triangles, that we can relate the lengths of the parallel sides to the lengths of the other 2 sides of the triangles.

