
Mathematics

CLASS TEXT & STUDY GUIDE

Anne Eadie & Gretel Lampe

Grade 10 Mathematics 3-in-1 CAPS

CLASS TEXT & STUDY GUIDE

The Answer Series Grade 10 Maths 3-in-1 study guide uses simple, logical steps to explore the CAPS curriculum in great depth, from first principles all the way up to final mastery. It addresses gaps in your memory from previous grades, before inviting you to tackle new work through carefully selected graded exercises.

Key features:

- Comprehensive, explanatory notes and worked examples
- $\cdot\,$ Graded exercises to promote logic and develop a technique for each topic
- Detailed solutions for all exercises
- An exam with fully explained solutions (paper 1 and paper 2) for thorough consolidation and final exam preparation.

This study guide has proven to be a great companion to Grade 10 Maths learners. Not only that, it builds confidence and also lays the foundations for success in Grade 11 and 12.

Mathematics

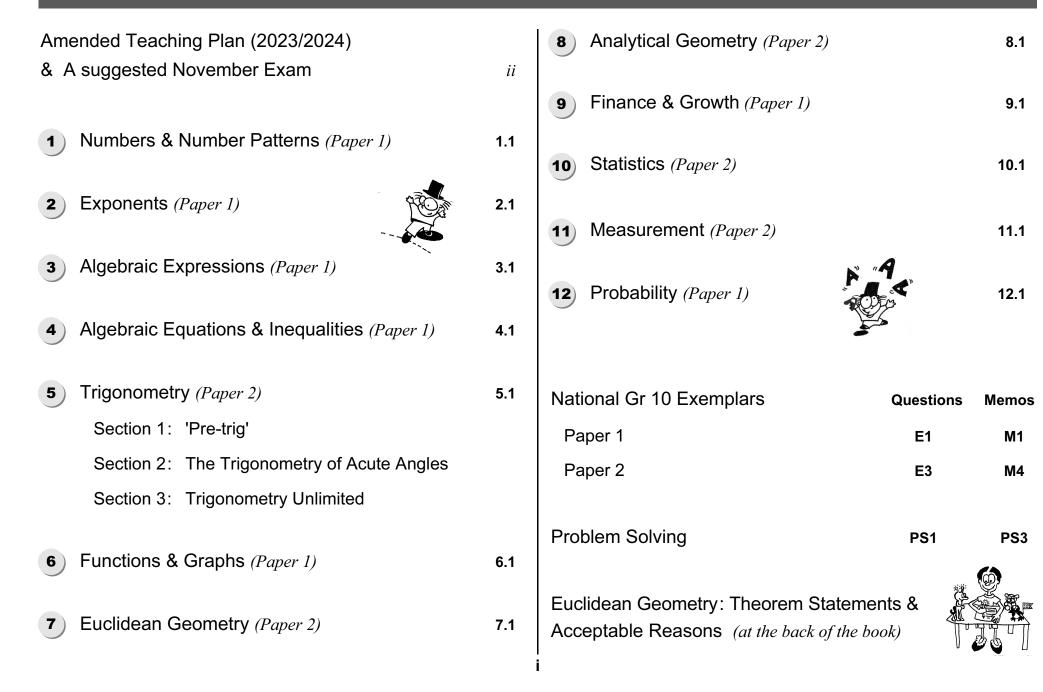
Anne Eadie & Gretel Lampe

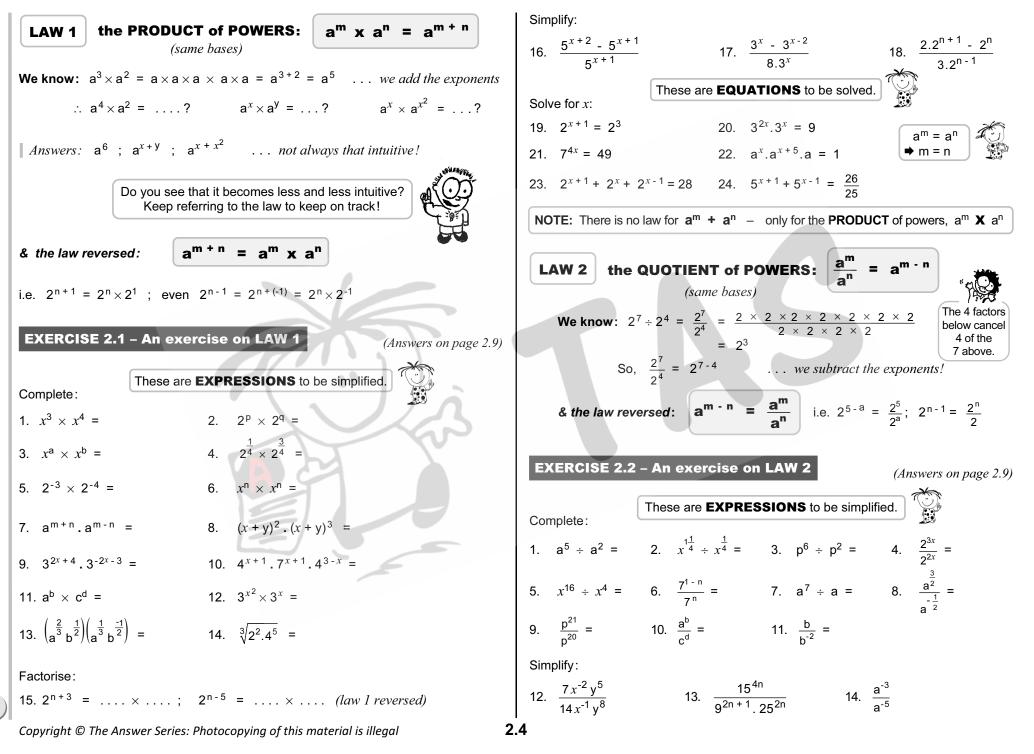
THIS CLASS TEXT & STUDY GUIDE INCLUDES

1	Comprehensive Notes
-	

- 2 Exercises
- 3 Full Solutions

Plus: Exam Papers and Memos


& Problem Solving Questions and Memos



DETAILED CONTENTS

Answers		24. $5^{x+1} + 5^{x-1} = \frac{26}{25}$
EXERCISE 2.1 – LAW 1	(Questions on page	2.4) $\therefore 5^x \cdot 5 + 5^x \cdot 5^{-1} = \frac{26}{25}$
1. x^7 2. 2^{p+q}	3. x ^{a+b}	$\therefore 5^{x}\left(5+\frac{1}{5}\right) = \frac{26}{25}$
4. $2^{\frac{1}{4} + \frac{3}{4}} = 2^1 = 2$ 5. $2^{-3-4} = 2^{-7}$	6. $x^{n+n} = x^{2n}$	$\therefore 5^{x} \left(\frac{26}{5}\right) = \frac{26}{25}$
7. $a^{m+n+m-n} = a^{2m}$ 8. $(x+y)^{2+3} = (a^{2m})^{2+3}$	$(x + y)^5$ 9. $3^{(2x + 4) + (-2x - 3)} = 3$	= 3 $\times \frac{5}{26}$ $\therefore 5^x = \frac{26}{25} \times \frac{5}{26}$
10. $4^{x+1+3-x} \cdot 7^{x+1} = 4^4 \cdot 7^{x+1}$ 11. cal	mot be simplified 12. $3^{x^2} \times 3^x =$	
13. $\left(\frac{2}{a^3} \frac{1}{b^2}\right) \left(\frac{1}{a^3} \frac{1}{b^2}\right)$ 14. $\sqrt[3]{2^2 \cdot 4^5} = \sqrt[3]{b^2}$	$2^2 \cdot 2^{10}$ 15. $2^{n+3} = 2^n \times 2^{n+3}$	$\therefore 5^x = 5^{-1}$
$= a^{\frac{2}{3} + \frac{1}{3}} \frac{1}{b^{\frac{1}{2}} - \frac{1}{2}} = \sqrt[3]{1}$		$\therefore x = -1$
$= a^{1}b^{0} = 1$		EXERCISE 2.2 - LAW 2 (Questions on page)
= a		$\begin{array}{c c} \bullet \\ \hline \\ 1. & a^3 \end{array} \qquad 2. & x^{1\frac{1}{4}-\frac{1}{4}} = x^1 = x \qquad 3. p^{6-2} = p^4 \end{array}$
16. $\frac{5^x \cdot 5^2 - 5^x \cdot 5}{5^x \cdot 5}$ 17. $\frac{3^x - 3^x \cdot 3^-}{8 \cdot 3^x}$	$\frac{2}{18} = \frac{2 \cdot 2^n \cdot 2}{3 \cdot 2^n \cdot 2^{-1}}$	4. $2^{3x-2x} = 2^x$ 5. $x^{16-4} = x^{12}$ 6. $7^{1-n-n} = 7^{1-2n}$
$=\frac{5^{\cancel{x}}(25-5)}{5^{\cancel{x}}.5} =\frac{3^{\cancel{x}}\left(1-\frac{1}{9}\right)}{2}$	$=\frac{2^{n}(4-1)}{2^{n}\cdot\frac{3}{2}}$	7. $a^{7-1} = a^6$ 8. $a^{\frac{3}{2}-(-\frac{1}{2})} = a^{\frac{4}{2}} = a^2$ 9. $p^{21-20} = p$
$=\frac{20}{5}$ $=\frac{8 \times 1}{5}$	$= 3 \times \frac{2}{3}$	10. cannot be simplified 11. $b^{1-(-2)} = b^3$ 12. $\frac{7x^{-2}y^5}{2 \cdot 14x^{-1}y^8} = \frac{1}{2xy^3}$
$= 4$ $= \frac{1}{2}$	= 3 \ \ 3 \ = 2	13. $\frac{15^{4n}}{9^{2n+1} \cdot 25^{2n}}$ 14. $\frac{a^{-3}}{a^{-5}} = a^{-3+5} = a^2$ 15. $3^{2x} = \frac{3^3}{3^{-x}}$
9	- m	
19. $2^{x+1} = 2^3$ 20. $3^{2x} \cdot 3^x = 3^{2x+x}$ $\therefore x+1 = 3$ $\therefore 3^{2x+x} = 3^{2x+x}$		$\frac{(3.5)^{4n}}{(3^2)^{2n+1} \cdot (5^2)^{2n}} \qquad \qquad \therefore \ 3^{2x} = 3^{3+x} \\ \therefore \ 2x = 3+x$
$\therefore x+1 = 3 \qquad \therefore 3^{2x+x} = $ $\therefore x = 2 \qquad \therefore 3x = $		$= \frac{3^{4n} \cdot 5^{4n}}{3^{4n+2} \cdot 5^{4n}} = \frac{1}{3^2} = \frac{1}{9}$ $\therefore x = 3$
x = 2		$3^{4n+2} \cdot 5^{4n} \cdot 3^2 \cdot 9$
22. $a^{x+x+5+1} = 1$ 23. 2^x , $2 + 2$	$2^{x} + 2^{x} \cdot 2^{-1} = 28$	16. $2^{4x} = \frac{2^3}{2^{2x-2}}$ 17. $4 \times 3^{2x} = 9 \times 2^{2x}$
	x + 2 + 2 = 20 $x \left(2 + 1 + \frac{1}{2}\right) = 28$	$\therefore 2^{4x} = 2^{3-2x+2} \qquad \div 4 \times 2^{2x}) \qquad \therefore \frac{3^{2x}}{2^{2x}} = \frac{9}{4}$
$\therefore 2x + 6 = 0$		$\therefore 2^{4x} = 2^{5-2x}$ $\therefore 4x = 5-2x$ $\therefore \left(\frac{3}{2}\right)^{2x} = \left(\frac{3}{2}\right)^{2} \qquad \dots \qquad \frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}$
$\therefore 2x = -6$	$\therefore 2^{x} \left(\frac{7}{2}\right) = 28$	$\therefore 4x = 5 - 2x \qquad \qquad \cdots (\overline{2}) = (\overline{2}) \qquad \cdots \qquad \overline{b^n} = (\overline{b})$ $\therefore 6x = 5 \qquad \qquad \therefore 2x = 2$
$\therefore x = -3$	$\therefore 2^x = {}^4\mathcal{A} \times \frac{2}{7}$	$\therefore x = \frac{5}{4}$ $\therefore x = 1$ Law 5 reversed,
A STATIS	$\therefore 2^x = 8$	to be compared to law
	$\therefore 2^{x} = 2^{3}$ $\therefore x = 3$	18. $3^{n-2} = \frac{3^n}{3^2}$; $5^{3-p} = \frac{5^3}{5^p}$

C EXPONENTS

FACTORISING - SOME GOOD ADVICE

How many terms do I have? The number of terms determines my options.

TERMS		OPTIONS			
2 terms	Always look out for a common factor	The difference of two squares OR The sum of two cubes or the difference of two cubes			
3 terms	FIRST!	Trinomial			
4 terms		2-2 - for common 'brackets', or 3-1 or 1-3 - leading to difference of squares			
5 terms	Grouping watch out for switchrounds!	3 - 2 or 2 - 3 - for common 'brackets'			
6 terms		 3 - 3 - for common 'brackets' or difference of squares or 2 - 2 - 2 - for common 'brackets' 			
A . I 41	n two good hobito				
Once y	en, two good habits ou've factorised: CK your factors	by multiplying out.			
Once y CHE	ou've factorised: CK your factors				
Once y • CHE Remen • Ask Doub	ou've factorised: CK your factors nber: factorising ⇐ yourself: 'Have ble-check for any si	by multiplying out. ⇒ multiplying out REVERSE PROCESSE I finished?' mplification or any further factorisation			
Once y • CHE Remen • Ask Doub (e.g.	ou've factorised: CK your factors nber: factorising ⇐ yourself: 'Have ble-check for any si	by multiplying out. \Rightarrow multiplying out REVERSE PROCESSE I finished?' mplification or any further factorisation <i>difference of squares</i>). (a + b) (2) $x^4 - y^4$ (2) $x^2 - y^2$			

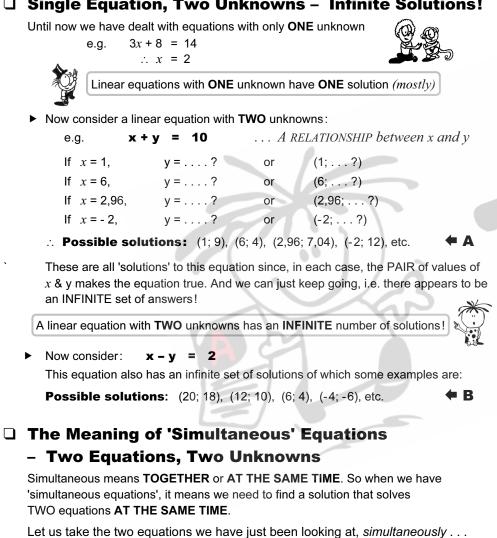
FIVE FACTORISATION TESTS

(approximately ½ hour each)

-						
A 1.	<i>x</i> ² - <i>x</i> - 12	2.	90x + 120y + 10x + 15y	3.	(x + 5)(x + 2) + k(2 + x)	(2)(4)(2)
	$x^{-} - x - 12$ $p^{2} - 14p - 32$	2. 5.		з. 6.	(x + 5)(x + 3) + k(3 + x) $12x^2 - 19xy - 21y^2$	(2)(4)(2)
4. 7.	$(x - y)^3 - 3(x - y)^2$		$2a^2 - 18$	0. 9.		(2)(2)(2)
	(x - y) - 3(x - y) ac + yd - ad - yc				$(a - b)^2 - 49$	(3)(2)(2)
	$42x^{3} + 11x^{2} - x$		3k(2m - 3n) + 5t(3n - 2m) x ⁶ - 64y ⁶			(2)(3)(2)
13.	$12x^{\circ} + 11x^{-} - x$ 1 - 16a ¹⁶				$x(x - 1)(x - 2) - (x - 1)^2$	(3)(3)(4)
16. 19.			-6m ² + 11m + 10 ession (in factorised form) int		4x - ax + ay - 4y	(4)(2)(2)
19.			e (i.e. the lowest common mu			(1)
20.	Calculate the value of 1	09 ² -	9^2 in the shortest possible w	ay, w	vithout using a calculator.	(3) [50]
в						
1.	pa + pb + qa + qb	2.	$x^2 + 5x + 6$	3.	$4x^2 - 9$	(2)(1)(1)
4.	5at + 9 + 3a + 15t	5.	$4x^2 - 20x + 25$	6.	5 - 20a ²	(3)(2)(2)
7.	3ac + 2bc - 2bd - 3ad	8.	3y ² + 15y - 108	9.	ac + 6b - 3ab - 2c	(2)(2)(3)
10.	p ³ - 8	11.	52 ² - 50 ² (evaluate)	12.	$132x^2 + 96xy - 36y^2$	(2)(3)(3)
13.	$9x^2 - 5y - 3x - 25y^2$	14.	8m ² - 50mn + 33n ²	15.	$x^4 - x^3 + x - 1$	(3)(3)(3)
16.	12mb + 9a ² - 4m ² - 9b ²	17.	$x^2 - 2xy - a^2 + y^2$	18.	$k^4 - 37k^2 + 36$	(3)(3)(3)
19.	16(2a + b) ² - 9(a - 2b) ²					(6) [50]
С						
1.	$x^2 - 25xy + 144y^2$	2.	$x^2 - 24xy + 144y^2$	3.	2ac - 3ad - 2bc + 3bd	(2)(2)(3)
4.	k(a - b) + n(b - a)	5.	122 ² - 120 ² (evaluate)	6.	2a ² - 2a - 12	(2)(3)(3)
7.	$ax - b^2 - bx + ab$	8.	$a^2x^2 + 5ax - 24$	9.	$x^2 - 2\frac{1}{4}$	(3)(2)(3)
10.	$20m^2n + 62mn^2 - 28n^3$	11.	ax^2 + 3by ² - 3bxy - axy	12.	$125x^3 + y^3$	(3)(3)(2)
13.	$20x^2 - 45y^2$	14.	$3a^3 + 12a^2b + 9ab^2$	15.	$x^2 - 2x + 2y - y^2$	(3)(3)(3)
16.		nen w	write down the factors of $(2x^2)$	- 4x +	$(x^2 - 3x + 3)^2$	
	in the simplest form.					(10) [50]
D	o ² o		2		2 10 00	
1.	$2x^2 - 8$		a ² - b ² + a - b		$x^2 - 12x + 36$	(3)(3)(2)
4.	$\left(r+\frac{1}{r}\right)^2 - \left(r-\frac{1}{r}\right)^2$	5.	$10x^2 + 38xy - 8y^2$	6.	$2x^3 - x^2 + 4 - 8x$	(3)(3)(3)
7.	$40ap^2 + 82a^2p + 40a^3$	8.	12ab + 8b ² - 6af - 4bf	9.	$-3x^2 + 21x - 30$	(3)(3)(3)
10.	3 - 3(<i>x</i> - y) ²	11.	$x^2 + 8 + \frac{16}{x^2}$	12.	$k(x^3 - 1) - k(x - 1)^3$	(3)(2)(5)
13.	4p ² (3p - 1) - 5p	14.	$x^2 - y^2 + 4x + 4$	15.	3a ³ - 24b ³	(4)(4)(3)
16.	If $P = 3x + 2$ and $Q =$	= 2 <i>x</i> -	1, express $P^2 - 2PQ + Q^2$ i	n terr	ns of x.	(3) [50]
1						

R

		a ² - 5ab - 6b ² ⁴ + 24 <i>x</i> ² y ² + 108y ⁴	(2)(2)(2) (2)(2)(2) = $(a + b) + q(a + b) = (a + b)(p + q)$	2. $(x + 2)(x + 3)$	3. $(2x + 3)(2x - 3)$
7. 21a ² + 26a - 15	8. $-0.81 + c^2$ 9. 4	$x^{3} + 24x^{2}y^{2} + 108y^{4}$ $b^{3} - 8b^{2} - ab + 2a$ $x^{3} + 4x^{2}y + 3xy^{2}$	$\begin{array}{ccc} (3)(3)(2) \\ (2)(2)(4) \\ (3)(3)(3) \end{array} \qquad \begin{array}{c} 4. & 5at + 15t + 3a + 9 \\ = 5t(a + 3) + 3(a + 3) \\ = (a + 3)(5t + 3) \end{array}$	5. $(2x - 5)^2$	6. 5(1 - 4a ²) = 5(1 + 2a)(1 - 2a)
5. $3a^2 + 6ab + 3b^2 + 9a^2y +$,7 ² - 2,3 ² (evaluate)	(3)(4) (5)(2)		9. ac - 3ab - 2c + 6b = a(c - 3b) - 2(c - 3b) = (c - 3b)(a - 2)
17. Factorise $x^3 + \frac{1}{x^3}$ and Answers to Factori	then determine the value of this expressi sation Tests	on if $x + \frac{1}{x} = 2$.	(5) [50] 10. (p - 2)(p ² + 2p + 4)	11. (52 + 50)(52 - 50) = (102)(2) = 204	12. $12(11x^2 + 8xy - 3y^2)$ = $12(11x - 3y)(x + y)$
A 1. (x - 4)(x + 3)	2. 4a(2x - 3y) - 5(2x - 3y) = (2x - 3y)(4a - 5)	3. (x + 3)(x +	= (3x + 5y)(3x - 5y) - (3x + 5y)(3x - 5y) - (3x + 5y)(3x - 5y) = 0	(3 <i>x</i> + 5y)	15. $x^{3}(x-1) + (x-1)$ = $(x-1)(x^{3}+1)$ = $(x-1)(x+1)(x^{2}-x+1)$
4. (p - 16)(p + 2)	5. m(4 - p) + 2(4 - p) = (4 - p)(m + 2)	6. (4 <i>x</i> + 3y)(3	16. 9a ² - 4m ² + 12mb -	$9b^2$ 17. $x^2 - 2xy + y^2 - a^2$	18. (k ² - 36)(k ² - 1)
7. $(x - y)^2[(x - y) - 3]$ = $(x - y)^2(x - y - 3)$	8. $2(a^2 - 9)$ = $2(a + 3)(a - 3)$	9. 4a ² + 28at = (2a - b)(2a	$a + 15b$) = $(3a)^2 - (2m - 3b)^2$	= (x - y + a)(x - y - a)	= (k + 6)(k - 6)(k + 1)(k - 1)
10. ac - ad - yc + yd = a(c - d) - y(c - d) = (c - d)(a - y)	11. 3k(2m - 3n) - 5t(2m - 3n) = (2m - 3n)(3k - 5t)	12. (a - b + 7)	= (3a + 2m - 3b)(3a - 19) = (3a + 2m - 3b)(3a - 2b)(3a	2m + 3b) p)][4(2a + b) - 3(a - 2b)]	
13. $x(12x^2 + 11x - 1)$ = $x(12x - 1)(x + 1)$	14. $(x^3)^2 - (8y^3)^2$ = $(x^3 + 8y^3)(x^3 - 8y^3)$ = $(x + 2y)(x^2 - 2xy + 4y^2)(x - 2xy +$	\dots the different two square	$= [[((1 - \zeta))])(1 + (1))]$		
	$OR (x^{2})^{3} - (4y^{2})^{3}$ $= (x^{2} - 4y^{2})(x^{4} + 4x^{2}y^{2} + 16y^{4})$ $= (x + 2y)(x - 2y)(x^{4} + 4x^{2}y^{2} + 16y^{4})$	the different two cubes	nce of C 1. (x - 16y)(x - 9y)	2. $(x - 12y)^2$	3. a(2c - 3d) - b(2c - 3d) = (2c - 3d)(a - b)
15. $(x - 1)[x(x - 2) - (x - 1)]$ = $(x - 1)(x^2 - 2x - x + 1)$		17(6m ² - 11	= (a - b)(K - h)	5. (122 + 120)(122 - 120) = (242)(2) = 484	6. 2(a ² - a - 6) = 2(a - 3)(a + 2)
$= (x - 1)(x^{2} - 3x + 1)$ $= (x - 1)(x^{2} - 3x + 1)$	- (2 · 14)(1 · 24)(1 - 24)	OR 10 + 11m - = (5 - 2m)(2	$6m^{2} $	8. (ax + 8)(ax - 3)	9. $x^2 - \frac{9}{4}$ = $(x + \frac{3}{2})(x - \frac{3}{2})$
18. $4x - ax - 4y + ay$ = $x(4 - a) - y(4 - a)$ = $(4 - a)(x - y)$	20. 109 ² - 9 ² = (109 + 9)(109 - = (118)(100) = 11 800	- 9)	$= (a - b)(x + b)$ 10. $2n(10m^2 + 31mn - 14)$ $= 2n(5m - 2n)(2m + 7)$		


W ALGEBRAIC EXPRESSIONS

Copyright © The Answer Series: Photocopying of this material is illegal

SIMULTANEOUS LINEAR EQUATIONS

This refers to solving problems where you have **TWO** equations and **TWO** unknowns. To build up our understanding of how to solve these, let us start with ONE equation and TWO unknowns.

□ Single Equation, Two Unknowns – Infinite Solutions!

x + y = 10... (1) We always number the x - y = 2... (2) equations on the right

Can both of these equations be true at the same time?

In other words, are there values of x and y that will make both equations true?

In words, let us ask ourselves:

Can you think of two numbers which add up to ten AND have a difference of two?

Hint: Look at the list of possible solutions for each equation above - see A & B

Solving Simultaneous Equations

If we are able to find the answer (6; 4) by just looking at the two equations and thinking about it, this is termed: solving the equations BY INSPECTION.

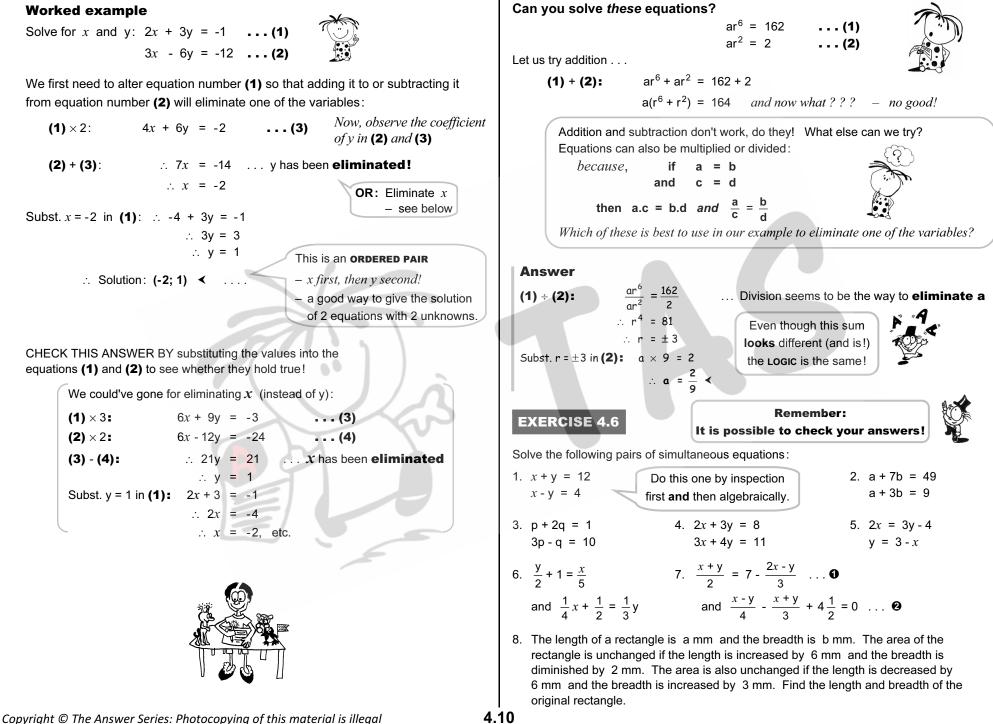
Now we will learn to find the answers to simultaneous equations *algebraically*, so that we can solve more complex problems.

Equations can be added or subtracted . . .

because if and	a = b c = d	LOGIC is essential
then $a + c = b + d$	or a - c = b - d	in Maths!

In our example above we had: $x + y = 10 \dots (1)$ $x - y = 2 \dots (2)$ and

Let us add equation (1) to equation (2) to find the answer algebraically

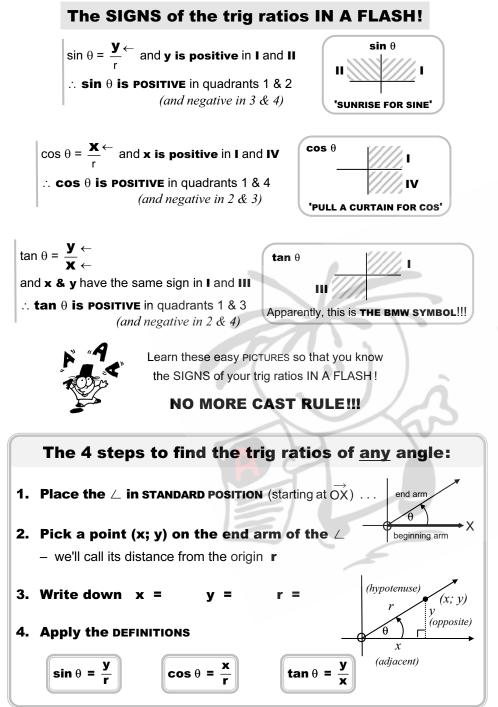

(1) + (2): ∴ <i>x</i>	+ y + x - y = 10 + 2	Notice that by
Ve always explain on the left	$\therefore 2x = 12 \ldots$	adding the equations we
hich operation we are doing.	$\therefore x = 6$	have
Substitute $x = 6$ in (1):	∴ 6 + y = 10	eliminated
	∴ y = 4	(lost) y!

∴ The two numbers are 6 and 4 <

We also say: (6; 4) is the SOLUTION to the simultaneous linear equations x + y = 10 and x - y = 2as these values of x & y make both the equations true.

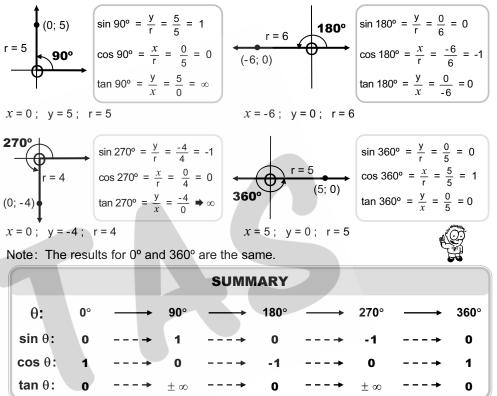
Sometimes one can't *eliminate* a variable by adding or subtracting straight away . . .

What do we mean by that?



57 113	pection ': The s What	are the number			2	
Alg	ebraically :					00
	x + y = 12 x - y = 4		2.	a + 7b = a + 3b =	49 (1) 9 (2)	
(1) + (2):	2x = 16 $\therefore x = 8$		(1) -	(2): 4b = ∴b =		
(1):	8 + y = 12 ∴ y = 4		(2):	a + 30 = ∴ a =		
∴ Solution Did you ge	n: (8; 4) t this by inspection	on?	∴ S	olution: (-21; 1	.0)	
3. (2) × 2		10 (2)	4. (1) ×		= 8 (1) = 11 (2) = 24 (3)	
(1) + (3	3): 7p = ∴p =			2: 6 <i>x</i> + 8y = (4): ∴ y =		
(2):	9 - q = q =		(3):	$\therefore 6x + 18 = \\ \therefore 6x = $		
∴ Solı	ition: (3; -1)		5	.: x = olution: (1; 2)	À	
5.		y - 4			ger	
	1): $2x = 3$ $\therefore 2x = 9$ $\therefore 2x + 3x = 9$ $\therefore 5x = 5$ $\therefore x = 1$	- 3x - 4 - 4		turing a		2
(2):	y = 3 ∴y = 2			É	C.	
∴ Solutio	n: (1; 2)					
6. × 10)	$\frac{y}{2} + 1 = \frac{x}{5}$ 5y + 10 = 2			$\frac{x}{4} + \frac{1}{2} = \frac{y}{3}$ 3x + 6 = 4y		
	$\therefore 5y - 2x = -3$ 2x - 5y = 10	10		x - 4y = -6	(2)	

(1) \times 3: 6x - 15y = 30 ... (3) (2) \times 2: 6x - 8y = -12 ... (4) (3) - (4): ∴ -7y = 42 ÷(-7): ∴ y = -6 From (1): 2x = 5y + 10= 5(-6) + 10 = -30 + 10 = -20 $\therefore x = -10$ and y = -6.: Solution: (-10; -6) 7. (1) \times 6: 3(x + y) = 42 - 2(2x - y) \therefore 3x + 3y = 42 - 4x + 2y \therefore 7x + y = 42 ...(3) (2) × 12: 3(x - y) - 4(x + y) + 54 = 0 \therefore 3x - 3y - 4x - 4y + 54 = 0 ∴ -x - 7y = -54 ∴ *x* + 7y = 54 × (-1): . . . (4) **(3)** × 7: \therefore 49x + 7y = 294 ... (5) $\therefore -48x = -240$ (4) - (5): $\therefore x = 5$ \therefore y = 42 - 7x (3): = 42 - 35 ∴y = 7 .: Solution: (5; 7) 8. (a + 6)(b - 2) = ab(a - 6)(b + 3) = aband ∴ ab - 2a + 6b - 12 = ab ∴ ab + 3a - 6b - 18 = ab ∴ -2a + 6b = 12 ∴ 3a - 6b = 18 ∴ -a+3b = 6 ... (1) ∴ a - 2b = 6 ... **(2)** ÷2) ÷3) (1) + (2): b = 12 From (2): a = 2(b) + 6 = 2(12) + 6 = 24 + 6 = 30 : length = 30 mm and breadth = 12 mm .: Solution: (30; 12)


Copyright © The Answer Series: Photocopying of this material is illegal

4.11

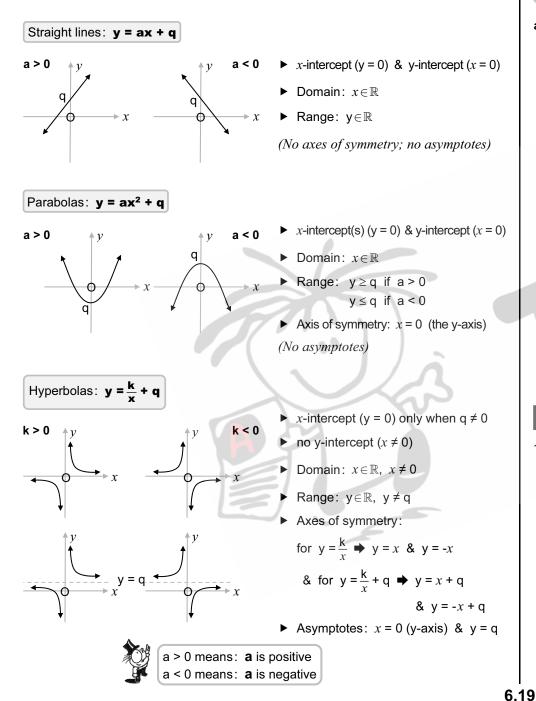
The trig ratios of 90° and multiples of 90°

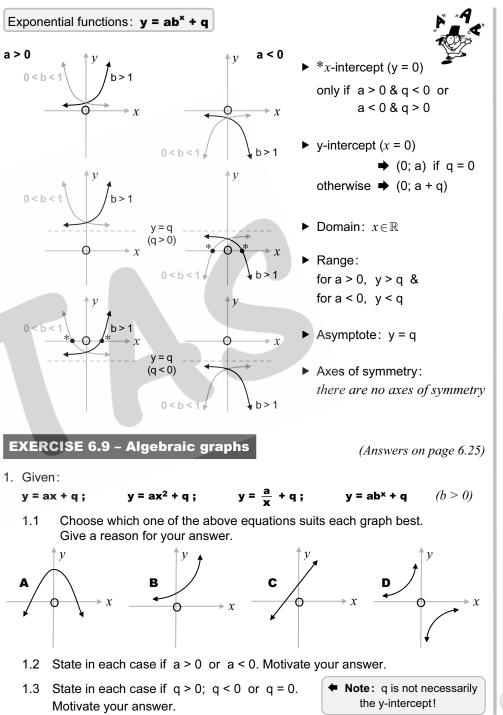
Use this procedure to find the trig ratios of 90° ; 180° ; 270° & 360° (& 0°)

Trigonometric graphs

We will learn how to sketch the graphs $y = \sin \theta$, $y = \cos \theta$ and $y = \tan \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$. We will use the critical values of these ratios to make it easy. But first, some terminology . . .

Terminology

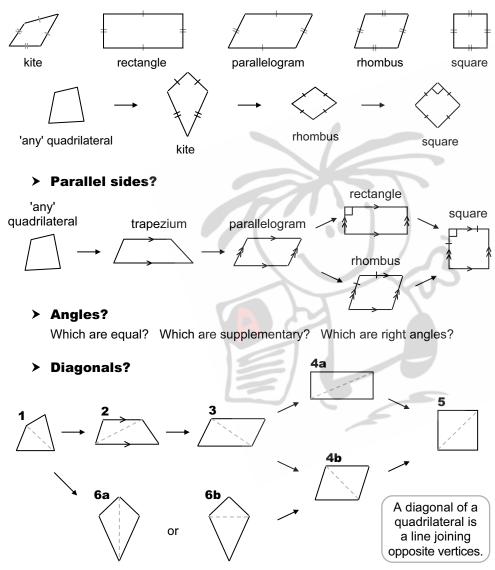

The sine and cosine graphs are WAVE-shaped.


- ► The **amplitude** of a WAVE is the deviation from its centre line:
- The period of a graph is the number of degrees spanning a FULL WAVE.
- ► The **range** is the set of all the possible y-values.

Our investigations of the trig ratios have shown us that the range of values of sines and cosines is very small - only between -1 and 1.

We write: $-1 \le \sin \theta \le 1$ and $-1 \le \cos \theta \le 1$ for all values of θ ! By contrast, the range of tan values is from $-\infty$ to $+\infty$!

A Summary of Algebraic Functions


Copyright © The Answer Series: Photocopying of this material is illegal

⁹ FUNCTIONS & GRAPHS

QUADRILATERALS

Revision of Properties of Quadrilaterals

- Recall all the quadrilaterals ... (kite, trapezium, parallelogram, rectangle, rhombus, square).
- What *properties* do they have?
- > Equal sides?

Investigating quadrilaterals, using diagonals:

- **fig. 1:** Use a diagonal to determine the sum of the interior angles of a quadrilateral.
- fig. 2: Use a diagonal to find the area of a trapezium.

How would you find the sum of the interior angles of a pentagon? A hexagon?

- **fig. 3 6:** Which of these quadrilaterals have their areas bisected by the diagonal?
- fig. 3 6: Draw in the second diagonal. For each figure, establish whether the diagonals are:
 - equal

- bisect each other
- intersect at right angles
- bisect the angles of the quadrilateral
- **fig. 6:** Find the area of a kite in terms of its diagonals. Could this formula apply to a rhombus? A square?

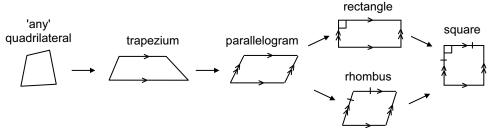
Defining Quadrilaterals

> A trapezium

Definition: A trapezium is a quadrilateral with ONE PAIR OF OPPOSITE SIDES parallel.

> A parallelogram

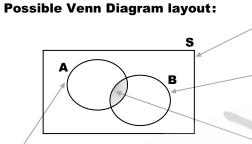
We have observed the *properties* of a parallelogram:


- both pairs of opposite sides parallel
- both pairs of opposite sides equal
- both pairs of opposite angles equal

We will, however, *define* the parallelogram in terms of its parallel lines.

b diagonals which bisect one another.

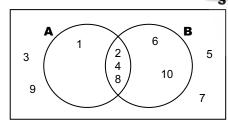
Definition: A parallelogram is a quadrilateral with TWO PAIRS OF OPPOSITE SIDES parallel.


Observe the progression of quadrilaterals below as we discuss further definitions:

Venn Diagrams

A graphical method to visually represent the outcomes of two or more different events (by means of circles); together with common elements of the events (by means of overlapping circles); as well as the sample space of all the events (by means of a rectangle).

Sample Space & Events


Event A - an event which contains all the possible outcomes of A

Worked Example 1

Set up a Venn Diagram to illustrate the following:

- A sample space from 1 to 10 (whole numbers only)
- Event A: the factors of 8
- Event B: the multiples of 2

Answer

Event A: Factors of 8 = {1; 2; 4; 8} ∴ n(**A**) = 4 elements Event B: Multiples of 2 = {2; 4; 6; 8; 10}

Sample Space

Event B

- the set of all possible outcomes

- an event which contains all

the possible outcomes of B

Common elements (shaded)

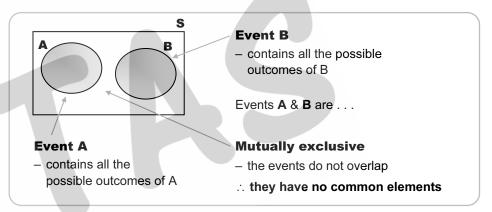
from event A and event B

[should they exist]

 \therefore n(**B**) = 5 elements

Common elements = {2: 4: 8}

Remember!

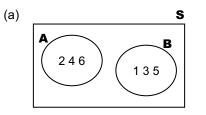

n(event) = number of favourable outcomes in the event

 P(event) = probability of the number of favourable outcomes n(E) divided by the total number of elements in the sample space n(S)

i.e. $P(E) = \frac{\text{the number of favourable outcomes that exist } n(E)}{\text{the total number of possible outcomes } n(S)}$

The sum of the probabilities in the Venn diagram must be 1 or 100%

Mutually Exclusive / Disjoint Events

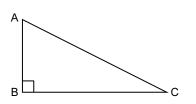


Worked Example 2

Given that $S = \{1, 2, 3, 4, 5, 6\}$ and that event **A** is all the even numbers and event **B** is all the odd numbers:

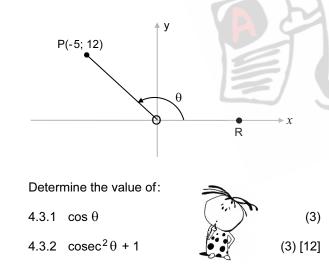
- (a) Draw a Venn Diagram to illustrate the situation.
- (b) Are these events ${\bm A}$ and ${\bm B}$ mutually exclusive? Give a reason for your answer.

Answers


(b) Yes, these events are mutually exclusive as an even number can never be an odd number.

Copyright © The Answer Series: Photocopying of this material is illegal

TRIGONOMETRY [36]


QUESTION 4

4.1 In the diagram below, $\triangle ABC$ is right-angled at B.

Complete the following statements:

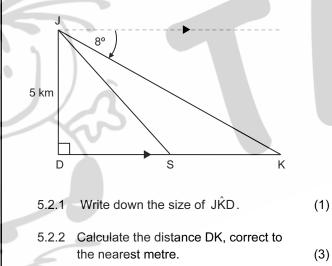
- 4.1.1 sin C = $\frac{AB}{\dots}$ 4.1.2 ... A = $\frac{AB}{BC}$
- 4.2 Without using a calculator, determine the value of: $\frac{\sin 60^\circ \cdot \tan 30^\circ}{\sec 45^\circ}$
- 4.3 In the diagram, P(-5; 12) is a point in the Cartesian plane and $\hat{ROP} = \theta$.

QUESTION 5

(1)

(1)

(4)


5.1 Solve for *x*, correct to ONE decimal place, in each of the following equations where $0^{\circ} \le x < 90^{\circ}$.

5.1.1	$5 \cos x = 3$	(2)

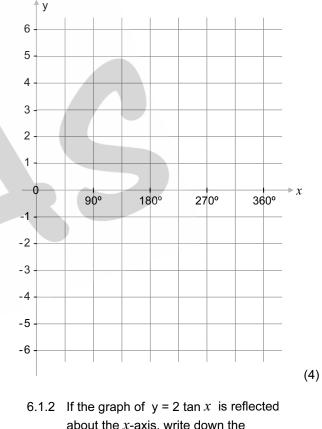
5.1.2 $\tan 2x = 1,19$ (3)

5.1.3 4 sec x - 3 = 5

5.2 An aeroplane at J is flying directly over a point D on the ground at a height of 5 kilometres. It is heading to land at point K. The angle of depression from J to K is 8°. S is a point along the route from D to K.

- 5.2.3 If the distance SK is 8 kilometres, calculate the distance DS.
- 5.2.4 Calculate the angle of elevation from point S to J, correct to ONE decimal place. (2) [16]

QUESTION 6


(4)

(1)

6.1 Consider the function $y = 2 \tan x$.

6.1.1 Make a neat sketch of $y = 2 \tan x$ for $0^{\circ} \le x \le 360^{\circ}$ on the axes provided below.

Clearly indicate on your sketch the intercepts with the axes and the asymptotes.

about the *x*-axis, write down the equation of the new graph obtained by this reflection.

(1)

Copyright $\ensuremath{\mathbb{C}}$ The Answer Series: Photocopying of this material is illegal

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (5 + 2)^2 = (\sqrt{53})^2$$

$$3.2 \quad \text{cD}^2 = (x + 1)^2 + (x + 1)^$$

=

→ x

a sin 90º

Copyright $\ensuremath{\mathbb{C}}$ The Answer Series: Photocopying of this material is illegal

EUCLIDEAN GEOMETRY: THEOREM STATEMENTS & ACCEPTABLE REASONS

LINES		TRIANGLES		
The adjacent angles on a straight line are supplementary.	∠s on a str line	The interior angles of a triangle are supplementary.	\angle sum in \triangle OR sum of \angle s in \triangle OR int \angle s in \triangle	
If the adjacent angles are supplementary, the outer arms of these angles form a straight line.	adj ∠s supp	The exterior angle of a triangle is equal to the sum of the two interior opposite angles.	$ext \perp of \Delta$	
The adjacent angles in a revolution add up to 360°.	∠s around a pt OR ∠s in a rev	The angles opposite the equal sides in an isosceles triangle are equal.	∠s opp equal sides	
Vertically opposite angles are equal.	vert opp ∠s	The sides opposite the equal angles in an isosceles triangle are equal.	sides opp equal ∠s	
If AB CD, then the alternate angles are equal.	In a right-angled triangle hypotenuse is equal to t		Pythagoras OR Theorem of Pythagoras	
If AB CD, then the corresponding angles are equal.	corresp ∠s; AB CD	If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.	Converse Pythagoras OR Converse Theorem of Pythagoras	
If AB CD, then the co-interior angles are supplementary.	co-int ∠s; AB CD	If three sides of one triangle are respectively equal to three sides of another triangle, the	SSS	
If the alternate angles between two lines are equal, then the lines are parallel.	alt ∠s =	triangles are congruent. If two sides and an included angle of one triangle		
If the corresponding angles between two lines are equal, then the lines are parallel.	corresp ∠s =	are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.	SAS OR S∠S	
If the co-interior angles between two lines are supplementary, then the lines are parallel.	co-int ∠s supp	If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.	AAS OR LLS	

INEC