## Mathematics

## CLASS TEXT \& STUDY GUIDE

10
Anne Eadie \& Gretel Lampe

## 3-in-1



## Grade 10 Mathematics 3-in-1 CAPS

## CLASS TEXT \& STUDY GUIDE

The Answer Series Grade 10 Maths 3-in-1 study guide uses simple, logical steps to explore the CAPS curriculum in great depth, from first principles all the way up to final mastery. It addresses gaps in your memory from previous grades, before inviting you to tackle new work through carefully selected graded exercises.

## Key features:

- Comprehensive, explanatory notes and worked examples
- Graded exercises to promote logic and develop a technique for each topic
- Detailed solutions for all exercises
- An exam with fully explained solutions (paper 1 and paper 2) for thorough consolidation and final exam preparation.

This study guide has proven to be a great companion to Grade 10 Maths learners. Not only that, it builds confidence and also lays the foundations for success in Grade 11 and 12.

GRADE


CAPS
3-in-1

## Mathematics

Anne Eadie \& Gretel Lampe

## THIS CLASS TEXT \& STUDY GUIDE INCLUDES

1 Comprehensive Notes

2 Exercises
novus print
A division of Novus Holdings

Plus: Exam Papers and Memos
\& Problem Solving Questions and Memos

## DETAILED CONTENTS

Amended Teaching Plan (2023/2024)
\& A suggested November Exam

1 Numbers \& Number Patterns (Paper 1)

2 Exponents (Paper 1)

3 Algebraic Expressions (Paper 1)

4 Algebraic Equations \& Inequalities (Paper 1)

5 Trigonometry (Paper 2)
Section 1: 'Pre-trig'
Section 2: The Trigonometry of Acute Angles
Section 3: Trigonometry Unlimited

6 Functions \& Graphs (Paper 1)

7 Euclidean Geometry (Paper 2)

8 Analytical Geometry (Paper 2)

9 Finance \& Growth (Paper 1)

10 Statistics (Paper 2)

11 Measurement (Paper 2)

12 Probability (Paper 1)

National Gr 10 Exemplars
Questions
Paper 1
E1
Paper 2

Problem Solving
PS1
PS3

Euclidean Geometry: Theorem Statements \&
Acceptable Reasons (at the back of the book)

## LAW 1 the PRODUCT of POWERS: <br> $a^{m} \times a^{n}=a^{m+n}$

(same bases)
We know: $a^{3} \times a^{2}=a \times a \times a \times a \times a=a^{3+2}=a^{5} \quad \ldots$ we add the exponents

$$
\therefore a^{4} \times a^{2}=\ldots ? \quad a^{x} \times a^{y}=\ldots ? \quad a^{x} \times a^{x^{2}}=\ldots ?
$$

| Answers: $\mathrm{a}^{6} ; \mathrm{a}^{x+y} ; \mathrm{a}^{x+x^{2}} \quad \ldots$ not always that intuitive!

Do you see that it becomes less and less intuitive? Keep referring to the law to keep on track!


## \& the law reversed:

## $a^{m+n}=a^{m} \times a^{n}$

.e. $2^{n+1}=2^{n} \times 2^{1}$; even $2^{n-1}=2^{n+(-1)}=2^{n} \times 2^{-1}$

EXERCISE 2.1-An exercise on LAW 1
(Answers on page 2.9)

Complete:
These are EXPRESSIONS to be simplified.

1. $x^{3} \times x^{4}=$
2. $x^{\mathrm{a}} \times x^{\mathrm{b}}=$
3. $2^{-3} \times 2^{-4}=$
4. $a^{m+n} \cdot a^{m-n}=$
5. $(x+y)^{2} \cdot(x+y)^{3}$
6. $3^{2 x+4} \cdot 3^{-2 x-3}=$
7. $4^{x+1} \cdot 7^{x+1} \cdot 4^{3-x}=$
8. $a^{b} \times c^{d}=$
9. $3^{x^{2}} \times 3^{x}=$
10. $\left(a^{\frac{2}{3}} b^{\frac{1}{2}}\right)\left(a^{\frac{1}{3}} b^{\frac{-1}{2}}\right)=$
11. $\sqrt[3]{2^{2} \cdot 4^{5}}=$

Factorise:
15. $2^{n+3}=\ldots \times \ldots ; 2^{n-5}=\ldots \times \ldots$ (law 1 reversed)

Simplify:
16. $\frac{5^{x+2}-5^{x+1}}{5^{x+1}}$
17. $\frac{3^{x}-3^{x-2}}{8.3^{x}}$
18. $\frac{2.2^{n+1}-2^{n}}{3.2^{n-1}}$
These are EQUATIONS to be solved.

Solve for $x$ :
19. $2^{x+1}=2^{3}$
20. $3^{2 x} \cdot 3^{x}=9$
21. $7^{4 x}=49$
22. $a^{x} \cdot a^{x+5} \cdot a=1$

23. $2^{x+1}+2^{x}+2^{x-1}=28$ 24. $5^{x+1}+5^{x-1}=\frac{26}{25}$

NOTE: There is no law for $\mathbf{a}^{m}+\mathbf{a}^{\mathrm{n}}-$ only for the PRODUCT of powers, $a^{m} \mathbf{X} a^{n}$

## LAW 2 the QUOTIENT of POWERS: <br> (same bases)



So, $\frac{2^{7}}{2^{4}}=2^{7-4}$
we subtract the exponents!

$$
\text { \& the law reversed: } \quad \mathbf{a}^{\mathbf{m}-\mathbf{n}}=\frac{\mathbf{a}^{\mathbf{m}}}{\mathbf{a}^{\mathbf{n}}} \text { i.e. } 2^{5-\mathrm{a}}=\frac{2^{5}}{2^{\mathrm{a}}} ; 2^{\mathrm{n-1}}=\frac{2^{n}}{2}
$$

## EXERCISE 2.2 - An exercise on LAW 2

(Answers on page 2.9)

Complete:

1. $a^{5} \div a^{2}=$
2. $x^{1 \frac{1}{4}} \div x^{\frac{1}{4}}=$
3. $\mathrm{p}^{6} \div \mathrm{p}^{2}=$
4. $\frac{2^{3 x}}{2^{2 x}}=$
5. $x^{16} \div x^{4}=$
6. $\frac{7^{1-n}}{7^{n}}=$
7. $a^{7} \div a=$
8. $\frac{a^{\frac{3}{2}}}{a^{-\frac{1}{2}}}=$
9. $\frac{\mathrm{p}^{21}}{\mathrm{p}^{20}}=$
10. $\frac{a^{b}}{c^{d}}=$
11. $\frac{\mathrm{b}}{\mathrm{b}^{-2}}=$

Simplify:
12. $\frac{7 x^{-2} y^{5}}{14 x^{-1} \mathrm{y}^{8}}$
13. $\frac{15^{4 n}}{9^{2 \mathrm{n}+1} \cdot 25^{2 \mathrm{n}}}$
14. $\frac{a^{-3}}{a^{-5}}$

## Answers

## EXERCISE 2.1 - LAW 1

1. $x^{7}$
2. $2^{p+q}$

Questions on page 2.4)
4. $2^{\frac{1}{4}+\frac{3}{4}}=2^{1}=2$
5. $2^{-3-4}=2^{-7}$
3. $x^{a+b}$
7. $a^{m+n+m-n}=a^{2 m}$
8. $(x+y)^{2+3}=(x+y)^{5}$
6. $x^{n+n}=x^{2 n}$
9. $3^{(2 x+4)+(-2 x-3)}=3^{1}=3$
10. $4^{x+1+3-x} \cdot 7^{x+1}=4^{4} \cdot 7^{x+1} \quad$ 11. cannot be simplified 12 . $3^{x^{2}} \times 3^{x}=3^{x^{2}+x}$
13. $\left(a^{\frac{2}{3}} b^{\frac{1}{2}}\right)\left(a^{\frac{1}{3}} b^{\frac{-1}{2}}\right)$
14. $\sqrt[3]{2^{2} .4^{5}}=\sqrt[3]{2^{2} \cdot 2^{10}}$
$=\sqrt[3]{2^{12}}$
$=2^{4}$
$=a^{1} b^{0}$
16. $\frac{5^{x} \cdot 5^{2}-5^{x} \cdot 5}{5^{x} \cdot 5}$
17. $\frac{3^{x}-3^{x} \cdot 3^{-2}}{8 \cdot 3^{x}}$
$=\frac{5^{x}(25-5)}{5^{x} .5}$
$=\frac{20}{5}$
$=4$
$=\frac{3^{x}\left(1-\frac{1}{9}\right)}{8 \cdot 3^{x}}$
$=\frac{8}{9} \times \frac{1}{8}$
$=\frac{1}{9}$
19. $2^{x+1}=2^{3}$
20. $\quad 3^{2 x} \cdot 3^{x}=9$
21. $7^{4 x}=49$
$x+1=3$
$\therefore x=2$

15. $2^{n+3}=2^{n} \times 2^{3}$; $2^{n-5}=2^{n} \times 2^{-5}$
$=a^{\frac{2}{3}+\frac{1}{3}} \cdot b^{\frac{1}{2}-\frac{1}{2}}$
$=16$



$$
\text { 24. } \begin{aligned}
& 5^{x+1}+5^{x-1}=\frac{26}{25} \\
& \therefore 5^{x} \cdot 5+5^{x} \cdot 5^{-1}=\frac{26}{25} \\
& \therefore 5^{x}\left(5+\frac{1}{5}\right)=\frac{26}{25} \\
& \therefore 5^{x}\left(\frac{26}{5}\right)=\frac{26}{25} \\
&\left.\times \frac{5}{26}\right) \\
& \therefore 5^{x}=\frac{26}{25} \times \frac{5}{26} \\
& \therefore 5^{x}=\frac{1}{5} \\
& \therefore 5^{x}=5^{-1} \\
& \therefore x=-1
\end{aligned}
$$

## EXERCISE 2.2 - LAW 2

(Questions on page 2.4)

1. $a^{3}$
2. $2^{3 x-2 x}=2^{x}$
3. $a^{7-1}=a^{6}$
4. cannot be simplified
5. $\frac{15^{4 n}}{9^{2 n+1} \cdot 25^{2 n}}$ $\frac{(3.5)^{4 n}}{\left(3^{2}\right)^{2 n+1} \cdot\left(5^{2}\right)^{2 n}}$
$=\frac{3^{4 n} \cdot 5^{4 n}}{3^{4 n+2} \cdot 5^{4 n}}=\frac{1}{3^{2}}=\frac{1}{9}$
6. $\frac{a^{-3}}{a^{-5}}=a^{-3+5}=a^{2}$
7. $x^{1 \frac{1}{4}-}$
8. $x^{16-4}=x^{12}$
. $p^{6-2}=p^{4}$
9. $7^{1-n-n}=7^{1-2 n}$
10. $\mathrm{p}^{21-20}=\mathrm{p}$
11. $\frac{7 x^{-2} y^{5}}{2^{14} x^{-1} y^{8}}=\frac{1}{2 x y^{3}}$
12. $a^{\frac{3}{2}-\left(-\frac{1}{2}\right)}=a^{\frac{4}{2}}=a^{2}$
13. $b^{1-(-2)}=b^{3}$
14. $3^{2 x}=\frac{3^{3}}{3^{-x}}$ $\therefore 3^{2 x}=3^{3+x}$
$\therefore 2 x=3+x$
$\therefore x=3$

$$
\therefore 2 x=-6
$$

$$
2^{x}\left(\frac{7}{2}\right)=28
$$

16. $2^{4 x}=\frac{2^{3}}{2^{2 x-2}}$
17. 

$$
4 \times 3^{2 x}=9 \times 2^{2 x}
$$

$2^{4 x}=2^{3-2 x+2}$
$2^{4 x}=2^{5-2 x}$

$$
4 x=5-2 x
$$

$$
\left(\frac{3}{2}\right)^{2 x}=\left(\frac{3}{2}\right)^{2} \quad \cdots \frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n}
$$

$$
\therefore x=-3
$$

$$
\begin{aligned}
& \therefore 2^{x}={ }^{4} 28 \times \frac{2}{7} \\
& \therefore 2^{x}=8 \\
& \therefore 2^{x}=2^{3} \\
& \therefore x=3
\end{aligned}
$$

## FACTORISING - SOME GOOD ADVICE

 How many terms do I have?The number of terms determines my options.

| NO. OF TERMS | OPTIONS |  |
| :---: | :---: | :---: |
| 2 terms | Always look out for a common factor FIRST! | The difference of two squares OR <br> The sum of two cubes or the difference of two cubes |
| 3 terms |  | Trinomial |
| 4 terms | Grouping <br> ... watch out for switchrounds! | 2-2 - for common 'brackets', or <br> 3-1 or <br> 1-3-leading to difference of squares |
| 5 terms |  | 3-2 or <br> 2-3- for common 'brackets' |
| 6 terms |  | 3-3- for common 'brackets' or difference of squares or <br> 2-2-2 - for common 'brackets' |

And then, two good habits
Once you've factorised:

- CHECK your factors by multiplying out.

Remember: factorising $\Leftrightarrow$ multiplying out

- Ask yourself: 'Have I finished?'

Double-check for any simplification or any further factorisation
(e.g. common factor or difference of squares)
e.g. (1) $2 x(a+b)+4(a+b)$
(2) $x^{4}-y^{4}$
$=(a+b)(2 x+4)$
$=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)$
$=2(a+b)(x+2)$
$=\left(x^{2}+y^{2}\right)(x+y)(x-y)$

Knowing that there are guidelines shifts the mind into a more confident way of thinking.

## FIVE FACTORISATION TESTS

A
$x^{2}-x-12$
2. $8 a x-12 a y-10 x+15 y$
3. $(x+5)(x+3)+\mathrm{k}(3+x)$
(2)(4)(2)
$p^{2}-14 p-32$
5. $4 \mathrm{~m}-\mathrm{pm}+8-2 \mathrm{p}$
6. $12 x^{2}-19 x y-21 y^{2}$
9. $28 a b+4 a^{2}-15 b^{2}$ (2)(2)(2)
$(x-y)^{3}-3(x-y)^{2}$
8. $2 a^{2}-18$
12. $(a-b)^{2}-49$ (3)(2)(2)
ac $+\mathrm{yd}-\mathrm{ad}-\mathrm{yc}$
11. $3 k(2 m-3 n)+5 t(3 n-2 m)$
15. $x(x-1)(x-2)-(x-1)^{2}$ (2)(3)(2)
$12 x^{3}+11 x^{2}-x$
14. $x^{6}-64 y^{6}$
18. $4 x-a x+a y-4 y$
(3)(3)(4)
1-16a ${ }^{16}$
17. $-6 m^{2}+11 m+10$
(4)(2)(2)
19. Write down the simplest expression (in factorised form) into which the expressions in questions $6,7 \& 18$ can divide (i.e. the lowest common multiple).
Calculate the value of $109^{2}-9^{2}$ in the shortest possible way, without using a calculator.


D

| $2 x^{2}-8$ | 2. | $a^{2}-b^{2}+a-b$ | 3. | $x^{2}-12 x+36$ | (3)(3)(2) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(r+\frac{1}{r}\right)^{2}-\left(r-\frac{1}{r}\right)^{2}$ | 5. | $10 x^{2}+38 x y-8 y^{2}$ | 6. | $2 x^{3}-x^{2}+4-8 x$ | (3)(3)(3) |
| $40 a p^{2}+82 a^{2} p+40 a^{3}$ | 8. | $12 \mathrm{ab}+8 \mathrm{~b}^{2}-6 \mathrm{af}-4 \mathrm{bf}$ | 9. | $-3 x^{2}+21 x-30$ | (3)(3)(3) |
| $3-3(x-y)^{2}$ | 11 | $x^{2}+8+\frac{16}{x^{2}}$ | 12. | $k\left(x^{3}-1\right)-k(x-1)^{3}$ | (3)(2)(5) |
| $4 p^{2}(3 p-1)-5 p$ | 14 | $x^{2}-y^{2}+4 x+4$ | 15. | $3 a^{3}-24 b^{3}$ | (4)(4)(3) |

Copyright © The Answer Series: Photocopying of this material is illegal 3.14

E
1． $9 a^{2}-49 b^{2}$
2．$x y+6 x+2 y+12$
3． $6 a^{2}-5 a b-6 b^{2}$
4． $18 a^{2}-8 b^{2}$
5．$-6 x^{3}+5 x^{2}+25 x$
6．$x^{4}+24 x^{2} y^{2}+108 y^{4}$
（2）（2）（2）
7． $21 a^{2}+26 a-15$
8．$-0,81+c^{2}$
9． $4 b^{3}-8 b^{2}-a b+2 a$
（3）（3）（2）
10．$\frac{3}{4}-3 x^{2}$
11．$y^{3}-y^{2}+y-1$
12．$x^{3}+4 x^{2} y+3 x y^{2}$
（2）（2）（4）
（3）（3）（3）
13．$a^{2}+c^{2}-b^{2}-2 a c$
14．$\left(x^{2}-2 x-8\right)^{2}+5\left(x^{2}-2 x-8\right)$
（3）（4）
15． $3 a^{2}+6 a b+3 b^{2}+9 a^{2} y+18 a b y+9 b^{2} y$
16． $2,7^{2}-2,3^{2}$（evaluate）
（5）（2）
17．Factorise $x^{3}+\frac{1}{x^{3}}$ and then determine the value of this expression if $x+\frac{1}{x}=2$ ．
（5）［50］

## Answers to Factorisation Tests

A

1．$(x-4)(x+3)$

4．$(p-16)(p+2)$

7．$(x-y)^{2}[(x-y)-3]$
$=(x-y)^{2}(x-y-3)$
10．$a c-a d-y c+y d$
$=a(c-d)-y(c-d)$
$=(c-d)(a-y)$
13．$x\left(12 x^{2}+11 x-1\right)$
$=x(12 x-1)(x+1)$

15．$(x-1)[x(x-2)-(x-1)]$
$=(x-1)\left(x^{2}-2 x-x+1\right)$
$=(x-1)\left(x^{2}-3 x+1\right)$

18． $4 x-a x-4 y+a y$
$=x(4-a)-y(4-a)$
$=(4-a)(x-y)$
2．$(4 x+3 y)(3 x-7 y)$
19．$(4 x+3 y)(3 x-7 y)(x-y)^{2}(x-y-3)(4-a)$
2． $4 \mathrm{a}(2 x-3 \mathrm{y})-5(2 x-3 \mathrm{y}) \quad$ 3．$(x+3)(x+5+\mathrm{k})$
$=(2 x-3 y)(4 a-5)$
5．$m(4-p)+2(4-p)$
6．$(4 x+3 y)(3 x-7 y)$
$=(4-p)(m+2)$
8． $2\left(a^{2}-9\right)$
9． $4 a^{2}+28 a b-15 b^{2}$
$=(2 a-b)(2 a+15 b)$
11． $3 k(2 m-3 n)-5 t(2 m-3 n)$
12．$(a-b+7)(a-b-7)$
$=(2 m-3 n)(3 k-5 t)$
14．$\left(x^{3}\right)^{2}-\left(8 y^{3}\right)^{2}$
the difference of
$=\left(x^{3}+8 y^{3}\right)\left(x^{3}-8 y^{3}\right) \quad$ two squares
$=(x+2 y)\left(x^{2}-2 x y+4 y^{2}\right)(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)$
$\begin{aligned} \text { OR } & \left(x^{2}\right)^{3}-\left(4 y^{2}\right)^{3} \\ = & \left(x^{2}-4 y^{2}\right)\left(x^{4}+4\right.\end{aligned}$
the difference of
$\begin{aligned} & =\left(x^{2}-4 y^{2}\right)\left(x^{4}+4 x^{2} y^{2}+16 y^{4}\right) \\ & =(x+2 y)(x-2 y)\left(x^{4}+4 x^{2} y^{2}+16 y^{4}\right)\end{aligned}$
two cubes

$$
\begin{aligned}
& \text { 16. }\left(1+4 a^{8}\right)\left(1-4 a^{8}\right) \\
& \left(1-2 a^{4}\right) \\
& \text { 17. }-\left(6 m^{2}-11 m-10\right) \\
& =\left(1+4 a^{8}\right)\left(1+2 a^{4}\right)\left(1-2 a^{4}\right) \\
& =-(2 m-5)(3 m+2) \\
& \text { OR } 10+11 m-6 m^{2} \\
& =(5-2 m)(2+3 m)
\end{aligned}
$$

20． $109^{2}-9^{2}=(109+9)(109-9)$

$$
\begin{aligned}
& =(118)(100) \\
& =11800
\end{aligned}
$$



## SIMULTANEOUS LINEAR EQUATIONS

This refers to solving problems where you have TWO equations and TWO unknowns To build up our understanding of how to solve these, let us start with ONE equation and TWO unknowns.

## $\square$ Single Equation, Two Unknowns - Infinite Solutions!

Until now we have dealt with equations with only ONE unknown

$$
\text { e.g. } \quad 3 x+8=14
$$

$\therefore x=2$


Linear equations with ONE unknown have ONE solution (mostly)

- Now consider a linear equation with TWO unknowns:

| e.g. | $\mathbf{x + y}$ | $=\mathbf{1 0}$ | $\ldots$ |
| :--- | :--- | :--- | :--- |
| If $x=1$, | $y=\ldots$ A RELATIONSHIP between $x$ and $y$ |  |  |
| If $x=6$, | $y=\ldots ?$ | or | $(1 ; \ldots ?)$ |
| If $x=2,96$, | $y=\ldots ?$ | or | $(6 ; \ldots ?)$ |
| If $x=-2$, | $y=\ldots ?$ | or | $(2,96 ; \ldots ?)$ |

Possible solutions: $(1 ; 9),(6 ; 4),(2,96 ; 7,04),(-2 ; 12)$, etc.
These are all 'solutions' to this equation since, in each case, the PAIR of values of $x \& y$ makes the equation true. And we can just keep going, i.e. there appears to be an INFINITE set of answers!

A linear equation with TWO unknowns has an INFINITE number of solutions!


- Now consider: $\mathbf{x - y}=\mathbf{2}$

This equation also has an infinite set of solutions of which some examples are:
Possible solutions: $(20 ; 18),(12 ; 10),(6 ; 4),(-4 ;-6)$, etc.

## The Meaning of 'Simultaneous' Equations

 - Two Equations, Two UnknownsSimultaneous means TOGETHER or AT THE SAME TIME. So when we have 'simultaneous equations', it means we need to find a solution that solves TWO equations AT THE SAME TIME.

Let us take the two equations we have just been looking at, simultaneously

$$
\begin{array}{ll}
x+y=10 & \ldots(1) \\
x-y=2 & \ldots(2)
\end{array}
$$

Can both of these equations be true at the same time?

In other words, are there values of $x$ and $y$ that will make both equations true?
In words, let us ask ourselves:
Can you think of two numbers which add up to ten AND have a difference of two?
Hint: Look at the list of possible solutions for each equation above $-\operatorname{see} \mathbf{A} \& \mathbf{B}$

## [ Solving Simultaneous Equations

If we are able to find the answer $(6 ; 4)$ by just looking at the two equations and thinking about it, this is termed: solving the equations BY INSPECTION.

Now we will learn to find the answers to simultaneous equations algebraically, so that we can solve more complex problems.

Equations can be added or subtracted .

| because $\ldots \quad$ if | $\mathbf{a}=\mathbf{b}$ |
| ---: | :--- |
| and | $\mathbf{c}=\mathbf{d}$ |
| then $\mathbf{a}+\mathbf{c}=\mathbf{b}+\mathbf{d}$ | or $\quad \mathbf{a}-\mathbf{c}=\mathbf{b}-\mathbf{d}$ |

## LOGIC is essential in Maths!



In our example above we had: $\left.\begin{array}{rl}x+y & =10 \ldots \text { (1) } \\ \text { and } & x-y\end{array}\right)$

$$
\begin{equation*}
\text { and } \quad x-y=2 \tag{2}
\end{equation*}
$$

Let us add equation (1) to equation (2) to find the answer algebraically . . .


## Worked example

Solve for $x$ and $y: 2 x+3 y=-1 \quad \ldots$ (1)

$$
3 x-6 y=-12 \quad \ldots \text { (2) }
$$



We first need to alter equation number (1) so that adding it to or subtracting it from equation number (2) will eliminate one of the variables:
(1) $\times 2$ :
$4 x+6 y=-2$
... (3)
Now, observe the coefficient of $y$ in (2) and (3)
(2) + (3):

$$
\therefore 7 x=-14
$$

y has been eliminated!

$$
\therefore x=-2
$$

Subst. $x=-2$ in

$$
\text { (1): } \therefore-4+3 y=-1
$$



Can you solve these equations?

$$
\begin{align*}
a r^{6} & =162  \tag{1}\\
a r^{2} & =2 \tag{2}
\end{align*}
$$

Let us try addition...

$$
\text { (1) + (2): } \quad a r^{6}+a r^{2}=162+2
$$

$$
\mathrm{a}\left(\mathrm{r}^{6}+\mathrm{r}^{2}\right)=164 \text { and now what?? ? no good! }
$$

Addition and subtraction don't work, do they! What else can we try?
Equations can also be multiplied or divided:

$$
\begin{array}{r}
\text { because, } \begin{aligned}
\text { if } \quad a=b \\
\text { and } \quad c=d
\end{aligned} \\
\text { then a.c }=\mathbf{b} . \mathrm{d} \quad \text { and } \frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{b}}{\mathrm{~d}}
\end{array}
$$



Which of these is best to use in our example to eliminate one of the variables?

## Answer

$(1) \div(2):$

$$
\begin{aligned}
\frac{a r^{6}}{a r^{2}} & =\frac{162}{2} \quad \ldots \text { Division seems to be the way to elimi } \\
r^{4} & =81 \\
\therefore r & = \pm 3 \\
a & \times 9=2
\end{aligned} \quad \begin{gathered}
\text { Even though this sum } \\
\text { looks different (and is!) } \\
\text { the LoGIC is the same! }
\end{gathered}
$$

## Remember:

It is possible to check your answers!

## EXERCISE 4.6

Solve the following pairs of simultaneous equations:

1. $x+y=12$
$x-y=4$
Do this one by inspection
first and then algebraically.
2. $p+2 q=1$
$3 p-q=10$
3. $\frac{y}{2}+1=\frac{x}{5}$
and $\frac{1}{4} x+\frac{1}{2}=\frac{1}{3} y$
4. $2 x+3 y=8$
$3 x+4 y=11$
5. $\frac{x+y}{2}=7-\frac{2 x-y}{3} \ldots$ (1)
and $\frac{x-y}{4}-\frac{x+y}{3}+4 \frac{1}{2}=0 \ldots$ (2
6. The length of a rectangle is a mm and the breadth is bmm . The area of the rectangle is unchanged if the length is increased by 6 mm and the breadth is diminished by 2 mm . The area is also unchanged if the length is decreased by 6 mm and the breadth is increased by 3 mm . Find the length and breadth of the original rectangle.

## Answers

1. 'By inspection': The sum of 2 numbers is 12 and their difference is 4 . What are the numbers?

## Algebraically:

$x+y=12$
(1)
2.
$a+7 b=49$
(1)
$x-y=4$
(2)

$$
\begin{aligned}
8+y & =12 \\
\therefore y & =4
\end{aligned}
$$

(1) + (2): $\quad \begin{aligned} \quad 2 x & =16 \\ \therefore x & =8\end{aligned}$
(1):
$\therefore$ Solution: $(8 ; 4)$
Did you get this by inspection?

5.

$$
\begin{array}{rlr}
2 x & =3 y-4 & \ldots(1) \\
y & =3-x & \ldots \text { (2) }
\end{array}
$$

(2) in (1):

$$
\begin{aligned}
\therefore 2 x & =9-3 x- \\
2 x+3 x & =9-4 \\
\therefore 5 x & =5
\end{aligned}
$$

(2):
(2): $\quad y=3-1$

$$
\therefore y=2
$$

Solution: $(1 ; 2)$
6.
$\frac{y}{2}+1=\frac{x}{5}$
×10) $5 y+10=2 x$
$5 y-2 x=-10$
$2 x-5 y=10$
(1)

$$
\begin{aligned}
\frac{x}{4}+\frac{1}{2} & =\frac{y}{3} \\
\times 12) & \\
3 x+6 & =4 y \\
\therefore 3 x-4 y & =-6 \quad \ldots \text { (2) }
\end{aligned}
$$

(1) $\times 3: \quad 6 x-15 y=30$
(3)
(2) $\times 2: \quad 6 x-8 y=-12$
(3)-(4): $\therefore-7 y=42$
$\div(-7): \quad \therefore y=-6$
From (1): $2 x=5 y+10$

$$
=5(-6)+10
$$

$$
=-30+10
$$

$$
=-20
$$

$\therefore$ Solution: $(-10 ;-6)$

$$
\therefore x=-10 \text { and } y=-6
$$

7. (1) $\times 6$ :

$$
\begin{aligned}
3(x+y) & =42-2(2 x-y) \\
3 x+3 y & =42-4 x+2 y \\
\therefore 7 x+y & =42
\end{aligned}
$$

(3)

(2) $\times 12$ :

$$
3(x-y)-4(x+y)+54=0
$$

$$
-x-7 y=-54
$$

$\times(-1)$ :

$$
\begin{aligned}
\therefore x+7 y & =54 \quad \ldots(4) \\
49 x+7 y & =294 \quad \ldots(5)
\end{aligned}
$$

$$
-48 x=-240
$$

(4) $-(5)$ :

$$
x=5
$$

(3): $\quad \therefore y=42-7 x$

$$
=42-35
$$

$$
y=7
$$

Solution: $(5 ; 7)$
8.

$$
(a+6)(b-2)=a b
$$

and

$$
\begin{aligned}
(a-6)(b+3) & =a b \\
a b+3 a-6 b-18 & =a b \\
\therefore 3 a-6 b & =18 \\
\therefore a-2 b & =6
\end{aligned}
$$

(1) $+(2): b=12$
From (2): $a=2(b)+6$
$=2(12)+6$
$=24+6$
$=30$
length $=30 \mathrm{~mm}$ and breadth $=12 \mathrm{~mm}$
Solution: $(30 ; 12)$
(2)

## The SIGNS of the trig ratios IN A FLASH!

## $\sin \theta=\frac{\mathbf{y}}{r} \leftarrow$ and $\mathbf{y}$ is positive in I and II

$\therefore$ sin $\theta$ is POSITIVE in quadrants $1 \& 2$
(and negative in $3 \& 4$ )

$\tan \theta=\frac{\mathbf{y}}{\mathbf{x}} \leftarrow$
and $\mathbf{x} \& \mathbf{y}$ have the same sign in I and III
$\boldsymbol{\operatorname { t a n }} \theta$ is POSITIVE in quadrants $1 \& 3$


Apparently, this is THE BMW SYMBOL!!!
(and negative in $2 \& 4$ )


Learn these easy PICTURES so that you know the SIGNS of your trig ratios IN A FLASH!

## NO MORE CAST RULE!!!

## The 4 steps to find the trig ratios of any angle:

1. Place the $\angle$ in standard position (starting at $\overrightarrow{\mathrm{OX}}$ )
2. Pick a point ( $\mathbf{x} ; \mathbf{y}$ ) on the end arm of the $\angle$


- we'll call its distance from the origin $\mathbf{r}$



## The trig ratios of $90^{\circ}$ and multiples of $90^{\circ}$

Use this procedure to find the trig ratios of $90^{\circ} ; 180^{\circ} ; 270^{\circ}$ \& $360^{\circ}\left(\& 0^{\circ}\right)$


$$
x=0 ; \quad y=5 ; \quad \mathrm{r}=5
$$

$$
x=-6 ; \quad y=0 ; r=6
$$


$\sin 270^{\circ}=\frac{y}{r}=\frac{-4}{4}=-1$
$\cos 270^{\circ}=\frac{x}{r}=\frac{0}{4}=0$
$\tan 270^{\circ}=\frac{y}{x}=\frac{-4}{0} \Rightarrow \infty$

$\sin 360^{\circ}=\frac{y}{r}=\frac{0}{5}=0$
$\cos 360^{\circ}=\frac{x}{r}=\frac{5}{5}=1$
$\tan 360^{\circ}=\frac{y}{x}=\frac{0}{5}=0$

$$
x=0 ; y=-4 ; r=4 \quad x=5 ; y=0 ; r=5
$$



Note: The results for $0^{\circ}$ and $360^{\circ}$ are the same.


## Trigonometric graphs

We will learn how to sketch the graphs $y=\sin \theta, y=\cos \theta$ and $y=\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$. We will use the critical values of these ratios to make it easy. But first, some terminology . . .

## Terminology

The sine and cosine graphs are WAVE-shaped.

- The amplitude of a WAVE is the deviation from its centre line:

- The period of a graph is the number of degrees spanning a FULL WAVE.
- The range is the set of all the possible $y$-values.

Our investigations of the trig ratios have shown us that the range of values of sines and cosines is very small - only between $\mathbf{- 1}$ and 1 .
We write: $\mathbf{- 1} \leq \boldsymbol{\operatorname { s i n }} \theta \leq 1$ and $\mathbf{- 1} \leq \cos \theta \leq 1$ for all values of $\theta$ ! By contrast, the range of tan values is from $-\infty$ to $+\infty$ !

## A Summary of Algebraic Functions

## Straight lines: $\mathbf{y}=\mathbf{a x}+\mathbf{q}$




- $x$-intercept $(y=0) \& y$-intercept $(x=0)$
- Domain: $x \in \mathbb{R}$
- Range: $y \in \mathbb{R}$
(No axes of symmetry; no asymptotes)


## Parabolas: $\mathbf{y}=\mathbf{a x}^{\mathbf{2}}+\mathbf{q}$

$$
\mathbf{a}>\mathbf{0}
$$

(No asymptotes)


- $x$-intercept $(\mathrm{y}=0)$ only when $\mathrm{q} \neq 0$
no $y$-intercept $(x \neq 0)$
Domain: $x \in \mathbb{R}, x \neq 0$
Range: $\mathrm{y} \in \mathbb{R}, \mathrm{y} \neq \mathrm{q}$
Axes of symmetry:

for $\mathrm{y}=\frac{\mathrm{k}}{\mathrm{x}} \Rightarrow \mathrm{y}=x \& \mathrm{y}=-\mathrm{x}$
\& for $\mathrm{y}=\frac{\mathrm{k}}{x}+\mathrm{q} \Rightarrow \mathrm{y}=\mathrm{x}+\mathrm{q}$
$\& y=-x+q$
- Asymptotes: $x=0$ ( y -axis) \& $\mathrm{y}=\mathrm{q}$


$$
\begin{aligned}
& a>0 \text { means: } \mathbf{a} \text { is positive } \\
& \mathbf{a}<0 \text { means: } \mathbf{a} \text { is negative }
\end{aligned}
$$


$\Delta y$


- y-intercept $(x=0)$
$\Rightarrow(0 ; a)$ if $q=0$
otherwise
(0; a + q)
- Domain: $x \in \mathbb{R}$
- Range:
for $a>0, y>q$ \&
for $a<0, \quad y<q$

Asymptote: $\mathrm{y}=\mathrm{q}$

Axes of symmetry: there are no axes of symmetry

## EXERCISE 6.9 - Algebraic graphs

(Answers on page 6.25)

1. Given:

$$
\mathbf{y}=\mathbf{a x}+\mathbf{q} ; \quad \mathbf{y}=\mathbf{a} \mathbf{x}^{2}+\mathbf{q} ; \quad \mathbf{y}=\frac{\mathbf{a}}{\mathbf{x}}+\mathbf{q} ; \quad \mathbf{y}=\mathbf{a} \mathbf{b}^{\mathbf{x}}+\mathbf{q} \quad(b>0)
$$

1.1 Choose which one of the above equations suits each graph best. Give a reason for your answer.

1.2 State in each case if $\mathrm{a}>0$ or $\mathrm{a}<0$. Motivate your answer.
1.3 State in each case if $q>0 ; q<0$ or $q=0$. Motivate your answer.

## QUADRILATERALS

## $\square$ Revision of Properties of Quadrilaterals

- Recall all the quadrilaterals ... (kite, trapezium, parallelogram, rectangle, rhombus, square).
- What properties do they have?
> Equal sides?



## Investigating quadrilaterals, using diagonals:

fig. 1: Use a diagonal to determine the sum of the interior angles of a quadrilateral.
fig. 2: Use a diagonal to find the area of

How would you find the sum of the interior angles of a pentagon? A hexagon?
fig. 3-6: Which of these quadrilaterals have their areas bisected by the diagonal?
fig. 3-6: Draw in the second diagonal. For each figure, establish whether the diagonals are:
b equal

- bisect each other
> intersect at right angles
> bisect the angles of the quadrilateral
fig. 6: Find the area of a kite in terms of its diagonals.
Could this formula apply to a rhombus? A square?
- Defining Quadrilaterals
> A trapezium



## > A parallelogram

We have observed the properties of a parallelogram:
$\rightarrow$ both pairs of opposite sides parallel

- both pairs of opposite sides equal
b both pairs of opposite angles equal
We will, however, define the parallelogram in terms of its parallel lines.

Definition: $\begin{aligned} & \text { A parallelogram is a quadrilateral with } \\ & \text { TWO PAIRS OF OPPOSITE SIDES parallel. }\end{aligned}$


Observe the progression of quadrilaterals below as we discuss further definitions:


## Venn Diagrams

A graphical method to visually represent the outcomes of two or more different events (by means of circles); together with common elements of the events (by means of overlapping circles); as well as the sample space of all the events (by means of a rectangle).

## - Sample Space \& Events



## Sample Space

- the set of all possible outcomes


## Event B

- an event which contains all the possible outcomes of $B$

Common elements (shaded)

## Event A

- an event which contains all the possible outcomes of $A$


## Worked Example 1

Set up a Venn Diagram to illustrate the following:

- A sample space from 1 to 10 (whole numbers only)
- Event A: the factors of 8
- Event B: the multiples of 2

Answer


Event A: Factors of $8=\{1 ; 2 ; 4 ; 8\}$

$$
\therefore \mathrm{n}(\mathbf{A})=4 \text { elements }
$$

Event B: Multiples of $2=\{2 ; 4 ; 6 ; 8 ; 10\}$

$$
\therefore \mathrm{n}(\mathbf{B})=5 \text { elements }
$$

Common elements $=\{2: 4: 8\}$

## Remember!

* $n$ (event) $=$ number of favourable outcomes in the event
* $\mathrm{P}($ event $)=$ probability of the number of favourable outcomes $\mathrm{n}(\mathrm{E})$ divided by the total number of elements in the sample space $n(S)$
i.e. $P(E)=\frac{\text { the number of favourable outcomes that exist } n(E)}{\text { the total number of possible outcomes } n(S)}$The sum of the probabilities in the Venn diagram must be 1 or $100 \%$


## Mutually Exclusive / Disjoint Events



Event A

- contains all the possible outcomes of $A$


## Event B

- contains all the possible outcomes of B

Events A \& B are

## Mutually exclusive

- the events do not overlap . they have no common elements


## Worked Example 2

Given that $\mathbf{S}=\{1 ; 2 ; 3 ; 4 ; 5 ; 6\}$ and that event $\mathbf{A}$ is all the even numbers and event $\mathbf{B}$ is all the odd numbers:
(a) Draw a Venn Diagram to illustrate the situation.
(b) Are these events $\mathbf{A}$ and $\mathbf{B}$ mutually exclusive? Give a reason for your answer.

## Answers

(a)
(b) Yes, these events are mutually exclusive as an even number can never be an odd number.


## TRIGONOMETRY [36]

## QUESTION 4

4.1 In the diagram below, $\triangle A B C$ is right-angled at $B$.


Complete the following statements:
4.1.1 $\sin C=\underline{A B}$
4.1.2 $\ldots A=\frac{A B}{B C}$
4.2 Without using a calculator, determine the
value of: $\frac{\sin 60^{\circ} \cdot \tan 30^{\circ}}{\sec 45^{\circ}}$
4.3 In the diagram, $\mathrm{P}(-5 ; 12)$ is a point in the Cartesian plane and ROP $=\theta$


Determine the value of:

$$
\begin{aligned}
& \text { 4.3.1 } \cos \theta \\
& \text { 4.3.2 } \operatorname{cosec}^{2} \theta+1
\end{aligned}
$$


(3)
(3) [12]

## QUESTION 5

5.1 Solve for $x$, correct to ONE decimal place, in each of the following equations where $0^{\circ} \leq x<90^{\circ}$.
5.1.1 $5 \cos x=3$
5.1.2 $\tan 2 x=1,19$
5.1.3 $4 \sec x-3=5$
5.2 An aeroplane at $J$ is flying directly over a point D on the ground at a height of 5 kilometres. It is heading to land at point K . The angle of depression from J to K is $8^{\circ}$. S is a point along the route from D to K .

5.2.1 Write down the size of JKD.
5.2.2 Calculate the distance DK, correct to the nearest metre.
5.2.3 If the distance SK is 8 kilometres, calculate the distance DS.
5.2.4 Calculate the angle of elevation from point S to J , correct to ONE decimal place.

## QUESTION 6

6.1 Consider the function $\mathrm{y}=2 \tan x$.
6.1.1 Make a neat sketch of $\mathrm{y}=2 \tan x$ for $0^{\circ} \leq x \leq 360^{\circ}$ on the axes provided below.
Clearly indicate on your sketch the intercepts with the axes and the asymptotes.

6.1.2 If the graph of $y=2 \tan x$ is reflected about the $x$-axis, write down the equation of the new graph obtained by this reflection.


$$
\begin{aligned}
\therefore(x-1)^{2}+49 & =53 \\
\therefore(x-1)^{2} & =4 \\
\therefore x-1 & = \pm 2 \\
\therefore x & =3 \text { or }-1
\end{aligned}
$$

## But $x<0$ in the second quadrant

$\therefore x=-1<\ldots$ only the neg. value of $x$ is valid
4.1.1 $\sin C=\frac{A B}{A C<}$
4.1.2 $\boldsymbol{\operatorname { c o t }} A=\frac{A B}{B C}$

Note: $\tan A=\frac{B C}{A B} ; \cot A=\frac{1}{\tan A}$
4.2 The expression
$=\frac{\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}}{\sqrt{2}}$

$=\frac{1}{2} \times \frac{1}{\sqrt{2}}$
$=\frac{1}{2 \sqrt{2}} \times \frac{\sqrt{\mathbf{2}}}{\sqrt{\mathbf{2}}}$
The denominator must be rationalised
$=\frac{\sqrt{2}}{4}<\ldots \sqrt{2} \times \sqrt{2}=2$
4.3.1 $\mathrm{OP}=13$ units $\ldots 5: 12: 13 \Delta$; Pythagoras

$\therefore \cos \theta=\frac{-5}{13}=-\frac{5}{13}<\ldots \cos \theta=\frac{x}{r}$
4.3.2 $\sin \theta=\frac{12}{13} \Rightarrow \operatorname{cosec} \theta=\frac{13}{12}$

$$
\begin{aligned}
& \therefore \operatorname{cosec}^{2} \theta+1=\left(\frac{13}{12}\right)^{2}+1=\frac{169}{144}+1 \\
& \quad=\frac{169+144}{144}=\frac{313}{144}<\quad\left(=2 \frac{25}{144}<\right)
\end{aligned}
$$

5.1.1 $5 \cos x=3$
$\div 5) \quad \therefore \cos x=\frac{3}{5} \quad(=0,6)$

$$
\therefore x \approx 53,1^{\circ}<\ldots \cos ^{-1}\left(\frac{3}{5}\right)=
$$

5.1.2

$$
\tan 2 x=1,19
$$

$$
\therefore 0
$$

$$
\therefore 2 x=49,958 \ldots{ }^{\circ} \ldots \tan ^{-1} 1,19=
$$

$$
\div 2) \quad \therefore x \approx 25,0^{\circ}
$$

5.1.3 $\quad 4 \sec x-3=5$
+3) $\quad \therefore 4 \sec x=8$
$\div 4) \quad \therefore \sec x=2$
$\cos x=\frac{1}{2}$

$$
x=60^{\circ}<\quad \ldots \cos ^{-1}\left(\frac{1}{2}\right)=
$$

5.2.1 JKXD $=8^{\circ}<\ldots$ alternate $\angle '$; || lines

$$
\text { 5.2.2 } \ln \triangle \mathrm{JDK}: \quad \frac{\mathrm{DK}}{5}=\cot 8^{\circ} \quad \ldots=\frac{1}{\tan 8^{\circ}}
$$

$$
\times 5) \quad \therefore \mathrm{DK}=\frac{5}{\tan 8^{\circ}}
$$

$=35,5768 \ldots \mathrm{~km}$
= 35 576,8 metres
$\approx 35577$ metres <
. . . correct to the nearest metre
5.2.3 DS = DK - SK
$=35,58 \mathrm{~km}-8 \mathrm{~km}$
$=27,58 \mathrm{~km}$ <
5.2.4 $\tan \mathrm{JSAD}=\frac{5}{27,58}$
$\therefore$ JŜD $\approx 10,3^{\circ}<\ldots \tan ^{-1}\left(\frac{5}{27,58}\right)=$
correct to 1 dec. place
6.1.1

6.1.2 $y=-2 \tan x<$
$\begin{aligned} 6.2 .1 \quad \mathrm{a}=4<\quad \mathrm{g}(x)=\mathrm{a} \sin x & \Rightarrow \mathrm{~g}\left(90^{\circ}\right)=\mathrm{a} \sin 90^{\circ} \\ & \Rightarrow 4=\mathrm{a}\end{aligned}$
6.2.2 The range of $h$ :
$-2 \leq y \leq 6<$
the values of $y$

## EUCLIDEAN GEOMETRY: THEOREM STATEMENTS \& ACCEPTABLE REASONS

## LINES

| The adjacent angles on a straight line are <br> supplementary. | $\angle \mathrm{s}$ on a str line |
| :--- | :--- |
| If the adjacent angles are supplementary, the outer <br> arms of these angles form a straight line. | adj $\angle \mathrm{s}$ supp |
| The adjacent angles in a revolution add up to $360^{\circ}$. | $\angle \mathrm{s}$ around a pt OR <br> Ls in a rev |
| Vertically opposite angles are equal. | vert opp $\angle \mathrm{s}$ |
| If $A B \\| C D$, then the alternate angles are equal. | alt $\angle \mathrm{s} ; \mathrm{AB} \\| \mathrm{CD}$ |
| If $A B \\| C D$, then the corresponding angles <br> are equal. | corresp $\angle \mathrm{s} ; \mathrm{AB} \\| \mathrm{CD}$ |
| If $A B \\| C D$, then the co-interior angles are <br> supplementary. | co-int $\angle \mathrm{s} ; \mathrm{AB} \\| \mathrm{CD}$ |
| If the alternate angles between two lines are equal, <br> then the lines are parallel. | alt $\angle \mathrm{s}=$ |
| If the corresponding angles between two lines are <br> equal, then the lines are parallel. | corresp $\angle \mathrm{s}=$ |
| If the co-interior angles between two lines are <br> supplementary, then the lines are parallel. | co-int $\angle \mathrm{s} \mathrm{supp}$ |

## TRIANGLES

| The interior angles of a triangle are supplementary. | $\angle$ sum in $\Delta \mathbf{O R}$ sum of $\angle \mathrm{s}$ in $\Delta$ OR int $\angle \mathrm{s}$ in $\Delta$ |
| :---: | :---: |
| The exterior angle of a triangle is equal to the sum of the two interior opposite angles. | ext $\angle$ of $\Delta$ |
| The angles opposite the equal sides in an isosceles triangle are equal. | $\angle$ s opp equal sides |
| The sides opposite the equal angles in an isosceles triangle are equal. | sides opp equal $\angle$ s |
| In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. | Pythagoras OR <br> Theorem of Pythagoras |
| If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled. | Converse Pythagoras OR Converse Theorem of Pythagoras |
| If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent. | SSS |
| If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent. | SAS OR $S \angle S$ |
| If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent. | AAS OR $\angle \angle S$ |

