DBE
PAST PAPERS

Maths Toolkit

OFFICIAL EXAMS \& MEMOS

GRADE

CAPS

Grade 12 Maths Toolkit | DBE Past Papers
 OFFICIAL EXAMS \& MEMOS

The Answer Series Grade 12 Maths Toolkit is a low-priced product, offering both theory and practice, and is perfect for exam preparation for matrics.

This UP-TO-DATE publication is indeed a TOOLKIT, containing:
DBE Nov Paper 1 \& Paper 2 Exams (2016-2023) with comprehensive solutions to all papers, including TOPIC GUIDES that make it possible to select questions on separate topics. Challenging questions, aligned with DBE Diagnostic Reports, have been clearly indicated throughout this study guide.

Supportive, vital documents \& powerful summaries

- mark distribution and cognitive levels
- the curriculum
- all examinable proofs
- summaries on trigonometry, quadrilaterals, concavity, analytical geometry and circle geometry,
- theorem statements and acceptable reasons
- calculator instructions
- DBE formulae / information sheet

How learners can improve their exam techniques:

- write a few of the papers under exam conditions
- get comfortable with having to concentrate for the full 3 hour time period
- learn to work though the paper a few times, answering all the routine questions first, then coming back for more challenging questions that take more time, and
- finally, when all else is done, tackling the questions that need more time and attention

Good exam technique makes a huge difference to anyone's ability to produce top quality work under pressure and there is no doubt that The Answer Series Grade 12 Maths Toolkit levels the playing fields and ensures that everyone has equal access to success.

THE

GRADE

Other Gr 12 publications available

- GRADE 12 MATHEMATICS 2-in-1

1) Questions in topics
2) Exam papers

3 A separate booklet on challenging, Level 3 \& 4 questions

Full solutions provided throughout

- GRADE 12 MATHEMATICS P \& A

10 additional, challenging
practice exams \& answers

Maths Toolkit OFFICIAL EXAMS \& MEMOS

Anne Eadie, Gretel Lampe, Jenny Campbell \& Susan Carletti

THIS PAST PAPERS TOOLKIT INCLUDES

- DBE Exam Papers
- Comprehensive solutions to all papers - compiled by our authors, not from the official memoranda
- Supportive, vital documents \& powerful summaries

CONTENTS: Gr 12 Exams for DBE

The Exam

Sure Route to Success in Matric Maths
Important Advice for Matrics
The Curriculum (CAPS): Overview of Topics

DBE Paper 1 Topic Guide DBE Paper 2 Topic Guide DBE November 2016 Paper 1 DBE November 2016 Paper 2 DBE November 2017 Paper 1 DBE November 2017 Paper 2 DBE November 2018 Paper 1 DBE November 2018 Paper 2 DBE November 2019 Paper 1 DBE November 2019 Paper 2 DBE November 2020 Paper 1 DBE November 2020 Paper 2 DBE November 2021 Paper 1 DBE November 2021 Paper 2 DBE November 2022 Paper 1 DBE November 2022 Paper 2 DBE November 2023 Paper 1 DBE November 2023 Paper 2

	Exam	Memo
	1	
	2	
-	3	A1
(5	A6
- NOTE	8	A11
The questions marked with	10	A15
an asterisk (*) are	13	A23
identified as challenging . . . average performance $<40 \%$.	15	A28
	18	A32
	20	A36
	23	A40
	25	A45
	28	A49
	30	A55
\%	33	A61
-	36	A66
${ }^{2}$	39	A71
	41	A77

VALUABLE DOCUMENTS

Bookwork: Examinable Proofs i
Trig Summary vii
Quadrilaterals - definitions, areas \& properties viii
Concavity \& The Point of Inflection ixAnalytical Geometry Toolkit

xi
xiiiGrouping of Circle Geometry TheoremsxivCalculator Instructionsxviii

Be sure to incorporate these Theory documents regularly as you revise.

DBE P1: TOPIG GUIDE	2016	2017	2018	2019	2020	2021	2022	2023
Algebra: Quadratic equations \& theory	1.1.1, 1.1.2, 1.2.1	1.1.1, 1.1.2	1.1.1, 1.1.2	1.1.1, 1.1.2	1.1.1, 1.1.2	1.1.1, 1.1.2, 1.3*	1.1.1, 1.1.2	1.1.1, 1.1.2
Quadratic inequalities	1.2.2	1.3.1	1.1.3	1.1 .3	1.1 .3	1.1.3	1.1.3	1.1.4
Simultaneous equations	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Exponents: Expressions			1.3*				1.3	
Equations \& Inequalities	1.1.4			1.3*	1.3*		1.4*	1.3*
Surds: Expressions								
Equations	1.1.3	1.1.3	1.1.4	1.1.4	1.1.4	1.1.4	1.1.4	1.1.3
> Logs (Application)								
Patterns \& Sequences: Quadratic	3.1*	2.1		2.1	2.2	3.1, 3.2, 3.3*, 3.4*	3	2.2
Arithmetic	2.1-2.3, 2.4*	2.2			2.1	4.1, 4.2		2.1
Geometric	3.2*		3.1, 3.2	2.2	11.3*	2	2.1	3.1.1
Σ		3*	3.3, 3.4*	3.1 *	3.1, 3.2*	$4.3^{*}, 4.4$	2.2	3.1.2
Mixed / General		-	$2.1-2.3$	3.2				3.2*
Finance, Growth \& Decay : Simple \& compound growth \& decay		6.1		6.1	6.2	8.1, 8.2	6.1	6.1.1, 6.2.1
Nominal \& Effective interest rates								6.1.2
Annuities	7.1-7.3, 7.4*	6.2 *	7.2	6.2	6.1, 6.3*	8.3*	6.2, 6.3*	6.2.2, 6.3*
Time line			7.1*					
Functions \& Graphs: Straight line and/or parabola		$\begin{aligned} & 1.3^{\star}, 4.1-4.4, \\ & 4.5^{\star}, 4.6,4.7^{*} \end{aligned}$	$6.1-6.3,6.4^{*}, 6.6^{*}$			7		
Hyperbola			5.1-5.3,		4.1	5	4.1	
Exponent. \& log function (incl. Inverses)	4.1-4.4, 4.5*					$6.1,6.2^{*}, 6.3,6.4^{*}$		
Inverse functions			4.1-4.3, 4.4*	$5.1-5.3,5.4^{*}, 5.5^{*}$	5.1, 5.2, 5.3*, 5.4* 5.5		$5.1-5.4,5.5^{*}$	
Mixed	$\begin{gathered} 5.1,5.2^{*}, 5.3,5.4^{*}, 5.5^{*} \\ 6.1,6.2,6.3^{*}, 6.4 \end{gathered}$	$5.1-5.5,5.6^{*}$		4.1 - 4.6, 4.7*	4.2		4.2	$4.1-4.7$ (4.6*), 5*
Differential Calculus: Finding the derivative: $1^{\text {st }}$ principles	8.1, 8.2*	7.1	8.1	7.1	7.1	9.1	7.1	7.1
Finding the derivative: using the rules	$\bigcirc 8.3$	7.2	8.2	7.2, 7.3	7.2, 8.4	9.2	7.2	7.2
Finding the average gradient	\square							
Tangent: the gradient \& the equation	8.4*			7.4*				7.3*
Curve sketching \& $f^{\prime \prime}$ \& concavity	$\begin{gathered} 5.6^{*}, 9.1 \\ (9.2-9.4)^{*} \end{gathered}$	8*	$5.4^{*}, 6.5^{*}, 9.1^{*}, 9.2$	9.1, 9.2*, 9.3, 9.4*	8.1, 8.2, 8.3*	$\left(10.1-10.4^{*}\right)^{*}$	7.3*, 8.1, 8.2, 8.3*	$8.1-8.5,(8.3)^{*}$
Practical application (incl. max/min)	1.2.3, 10.1, 10.2*, 10.3*	9*	10*	8.1, 8.2*, 8.3	8.5*, 9.1*, 9.2*	11*	9*	9*
Probability: Probability rules			12.1			12.1*		10.1
Venn diagrams		10.1, 10.2*, 10.3*		11.1*			10.1*	
Tree diagrams			12.2*		11.1*, 11.2			10.2*
2-way Contingency tables	11.1, 11.2*, 11.3							
Fundamental Counting Principle	12*	11*	11*	10*, 11.2	10*	12.2*	10.2*	10.3*

[^0]
DBE NOVEMBER EXAMS

DBE NOV 2016 PAPER 1

Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
Answers only will NOT necessarily be awarded full marks.
You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
If necessary, round off answers to TWO decimal places, unless stated otherwise.

- ALGEBRA AND EQUATIONS AND INEQUALITIES [24]

QUESTION 1

1.1 Solve for x :
1.1.1 $x(x-7)=0$
(2)
1.1.2 $x^{2}-6 x+2=0$ (correct to TWO decimal places)
1.1.3 $\sqrt{x-1}+1=x$
1.1.4 $3^{x+3}-3^{x+2}=486$
(4)
1.2 Given: $\mathrm{f}(x)=x^{2}+3 x-4$
1.2.1 Solve for x if $\mathrm{f}(x)=0$
1.2.2 Solve for x if $\mathrm{f}(x)<0$
(2)
1.2.3 Determine the values of x for which $\mathrm{f}^{\prime}(x) \geq 0$
1.3 Solve for x and $y: x=2 y$ and $x^{2}-5 x y=-24$ (4) [24]

- PATTERNS \& SEQUENCES [26]

QUESTION 2

Answers on p. AI
Given the finite arithmetic sequence:

$$
5 ; 1 ;-3 ; \ldots \ldots ;-83 ;-87
$$

2.1 Write down the fourth term $\left(T_{4}\right)$ of the sequence.
2.2 Calculate the number of terms in the sequence.
2.3 Calculate the sum of all the negative numbers in the sequence.
2.4* Consider the sequence

$$
5 ; 1 ;-3 ; \ldots \ldots ;-83 ;-87 ; \ldots \ldots ;-4187
$$

Determine the number of terms in this sequence that will be exactly divisible by 5 .

QUESTION 3

Answers on p. A2
3.1* The first four terms of a quadratic number pattern are
-1 ; x; 3 ; $x+8$
3.1.1 Calculate the value(s) of x.
3.1.2 If $x=0$, determine the position of the first term in the quadratic number pattern for which the sum of the first n first differences will be greater than 250.
3.2* Rectangles of width 1 cm are drawn from the edge of a sheet of paper that is 30 cm long such that there is a 1 cm gap between one rectangle and the next.
The length of the first rectangle is 21 cm and the length of each successive rectangle is 85% of the length of the previous rectangle until there are rectangles drawn along the entire length of AD. Each rectangle is shaded.

3.2.1 Calculate the length of the $10^{\text {th }}$ rectangle.
3.2.2 Calculate the percentage of the paper that is shaded.
(4) [15]

- FUNCTIONS \& GRAPHS [35]

QUESTION 4

Sketched below is the graph of $h(x)=a^{x}, a>0$.
R is the y-intercept of h.
The points $P(2 ; 9)$ and $Q\left(b ; \frac{1}{81}\right)$ lie on h.

4.1 Write down the equation of the asymptote of h.
4.2 Write down the coordinates of R.
4.3 Calculate the value of a.
4.4 D is a point such that $\mathrm{DQ} \| y$-axis and $\mathrm{DP} \| x$-axis.

Calculate the length of DP
4.5* Determine the values of k for which the equation $\mathrm{h}(x+2)+\mathrm{k}=0$ will have a root that is less than -6 . (3)

Finding some challenges along the way? $\not \approx$ Use the memo wisely and make sure you process and understand every step of the solution.

QUESTION 4

Answers on $p . A 17$
In the diagram, $\mathrm{P}(-4 ; 5)$ and $\mathrm{K}(0 ;-3)$ are the end points of the diameter of a circle with centre M. S and R are respectively the x - and y-intercepts of the tangent to the circle at P .
θ is the inclination of PK with the positive direction of the x-axis

4.1 Determine:
4.1.1 The gradient of $S R$
(4)
4.1.2 The equation of $S R$ in the form $y=m x+c \quad$ (2)
4.1.3 The equation of the circle in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$
4.1.4 The size of PK̂R
4.1.5 The equation of the tangent to the circle at K in the form $\mathrm{y}=\mathrm{m} x+\mathrm{c}$
4.2* Determine the values of t such that the line
$y=\frac{1}{2} x+t$ cuts the circle at two different points.
4.3* Calculate the area of $\triangle \mathrm{SMK}$.
(5)
[23]

- TRIGONOMETRY [41]

QUESTION 5 Answers on $p . A 18$
 on p v
5.1 Given: $\frac{\sin \left(\mathrm{A}-360^{\circ}\right) \cdot \cos \left(90^{\circ}+\mathrm{A}\right)}{\cos \left(90^{\circ}-\mathrm{A}\right) \cdot \tan (-\mathrm{A})}$

Simplify the expression to a single trigonometric ratio.
5.2 In the diagram, $\mathrm{P}(3 ; \mathrm{t})$ is a point in the Cartesian plane.
$O P=\sqrt{34}$ and reflex HÔP = β

Without using a calculator, determine the value of

5.2 .1 t
5.2.2 $\tan \beta$
5.2.3 $\cos 2 \beta$
(2)(1)(4)
5.3* Prove:
5.3.1 $\sin (A+B)-\sin (A-B)=2 \cos A \cdot \sin B$
5.3.2 and hence, without using a calculator, that $\sin 77^{\circ}-\sin 43^{\circ}=\sin 17^{\circ}$
(4) $[19]$

QUESTION 6
Answers on p. A19
In the diagram, the graph of $\mathrm{f}(x)=\cos 2 x$ is drawn for the interval $x \in\left[-270^{\circ} ; 90^{\circ}\right]$.

x	7.1

6.2* Let A be a point of intersection of the graphs of \mathbf{f} and \mathbf{g} Show that the x-coordinate of A satisfies the equation

$$
\begin{equation*}
\sin x=\frac{-1+\sqrt{5}}{2} \tag{4}
\end{equation*}
$$

6.3* Hence, calculate the coordinates of the points of intersection of graphs of \mathbf{f} and \mathbf{g} for the interval $x \in\left[-270^{\circ} ; 90^{\circ}\right]$.

QUESTION 7

Answers on p. A20
$A B$ represents a vertical netball pole. Two players are positioned on either side of the netball pole at points D and E such that D, B and E are on the same straight line. A third player is positioned at C . The points $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are in the same horizontal plane.

The angles of elevation from C to A and from E to A are x and y respectively. The distance from B to E is k.

7.1 Write down the size of $A \hat{B} C$.
7.2* Show that $A C=\frac{k \cdot \tan y}{\sin x}$

7.3* If it is further given that $D A \hat{C}=2 x$ and $A D=A C$, show that the distance $D C$ between the players at D and C is $2 k \tan y$.

Consult the Topic Guide on page 2 for more examples on a particular topic.
6.1 Draw the graph of $\mathrm{g}(x)=2 \sin x-1$ for the interval $x \in\left[-270^{\circ} ; 90^{\circ}\right]$ on the grid. Show ALL the intercepts with the axes, as well as the turning points
2.3 All the terms from -3 onwards are negative
\therefore There are 22 terms, i.e. $\mathrm{n}=22$

$\mathbf{a}=-3 ; \mathbf{d}=-4 ; \mathbf{S}_{22} \mathbf{?} ; \mathbf{T}_{22}=-87$	
$\mathbf{S}_{\mathbf{n}}=\frac{\mathbf{n}}{\mathbf{2}}\left(\mathbf{a}+\mathbf{T}_{\mathbf{n}}\right) \Rightarrow \mathrm{S}_{22}$	$=\frac{22}{2}[-3+(-87)]$
	$=11(-90)$
Always preferable to use this formula when you have the value of $\mathbf{T}_{\mathbf{n}}$.	$=-990<$

$\int O R: \quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\Rightarrow S_{22}=\frac{22}{2}[2(-3)+(22-1)(-4)]$
$=11[-6-84]$
$=11[-90]$
$=-990<$
4)]
3.1
$1^{\text {st }}$ diff.:
$2^{\text {nd }}$ diff.:

3.1.1 $2-2 x=2+2 x$
quadratic sequence has
$\therefore-4 x=0$
$\therefore x=0<$
$\begin{array}{llllllll}3.1 .2 & -1 & & 0 & & 3 & & 8 \\ & & 1 & & 3 & & 5 \\ & & & 2 & & 2 & & \end{array}$
The $1^{\text {st }}$ differences: $1 ; 3 ; 5 ; .$.

$$
T_{n}=2 n-1
$$

$\& S_{n}=\frac{n}{2}\left(a+T_{n}\right)$
$=\frac{n}{2}(1+2 n-1)$
$=\frac{\mathrm{n}}{2}(2 \mathrm{n})$
$=n^{2}$

$$
\mathrm{s}_{\mathrm{n}}=250 \Rightarrow \mathrm{n}^{2}=250
$$

$$
S_{n}>250 \Rightarrow n=16
$$

The $16^{\text {th }}$ term (of the $1^{\text {st }}$ differences) is the $1^{\text {st }}$ difference between the $16^{\text {th }}$ and $17^{\text {th }}$ term of the original number pattern

The required position is the $17^{\text {th }}$ term $<$
$5 ; 1 ;-3 ;-7 ;-11 ;-15 ;-19$
-31 ; -35 ;
The first term of each group of 5 terms is divisible by 5 . The number of groups of 5 terms $=\frac{1049}{5}=209$ rem 4.
. There are 209 complete groups and the first 4 terms of the next group (which will start with a multiple of 5).

210 terms <

3.2.1 The lengths of the rectangles are:

21 ; $21 \times 0,85$; $21 \times(0,85)^{2}$;

$$
\begin{aligned}
\therefore T_{10} & =21 \times 0,85^{9} \quad \ldots \mathbf{T}_{\mathbf{n}}=\operatorname{ar}^{n-1} \\
& \simeq 4,86 \mathrm{~cm}<
\end{aligned}
$$

3.2.2 The length of the sheet is 30 cm) 15 rectangles can be drawn

The sum of the areas of the 15 rectangles:
S15
$=21 \times 1+21 \times 0,85 \times 1+21 \times(0,85)^{2} \times 1+\ldots \quad \ldots 15$ terms
$=\frac{21\left[1-(0,85)^{15}\right]}{1-0,85} \quad \ldots \mathbf{S}_{\mathbf{n}}=\frac{\mathbf{a}\left(\mathbf{1}-\mathbf{r}^{\mathbf{n}}\right)}{\mathbf{1 - r}}$
$=127,77 \mathrm{~cm}^{2}$
\therefore The \% that is shaded $=\frac{127,77}{21 \times 30}=0,20281 \ldots$
$\simeq 20,28 \%<$

- FUNCTIONS AND GRAPHS [35]
$4.1 \quad y=0<$
The asymptote is the x-axis!
\& The eqn. of the x-axis is $\mathbf{y}=\mathbf{0}$
$4.2 \mathbf{R}(0 ; 1)<\quad \ldots$ At $R, x=0$ \& $y=a^{0}=1$
4.3 Pt P(2;9) on graph $y=a^{x}$

Substitute: $\quad \therefore 9=\mathrm{a}^{2}$

$$
\mathbf{a}=3<\quad \ldots a \geq 0 \text { in } y=a^{x}
$$

4.4 Pt Q $\left(\mathrm{b} ; \frac{1}{81}\right)$ on graph $\mathrm{y}=3^{x} \quad \ldots a=3$ in 4.3
$\therefore \frac{1}{81}=3^{b}$
$3^{b}=3^{-4} \quad \cdots \frac{1}{81}=\frac{1}{3^{4}}=3^{-4}$
$\therefore \mathrm{b}=-4$
$\therefore x_{\mathrm{D}}=-4 \quad \ldots x_{D}=x_{Q}$
Length of DP $=4+2$
or, $2-(-4)$
$=6$ units $<$

8.1.5 In $\triangle \mathrm{ONR}$:

$$
\mathrm{ON}=\mathrm{OR} \quad \ldots \text { equal radii }
$$

$\therefore \mathrm{ONR}=\hat{\mathrm{R}}$

$$
\begin{aligned}
& =\frac{1}{2}\left(180^{\circ}-66^{\circ}\right) \ldots \text { sum of } \angle^{s} \text { of } \Delta \\
& =57^{\circ} \\
\therefore \hat{\mathrm{N}}_{2} & =57^{\circ}-24^{\circ} \\
& =33^{\circ}
\end{aligned}
$$

8.2.1 $\mathrm{FC} \| \mathrm{AB} \ldots \begin{gathered}\text { opp. sides of } \\ \text { a rectangle }\end{gathered}$
\& $A B \| G H \ldots$ given
FC||GH <
8.2.2 In $\triangle \mathrm{AGH}$:
$\frac{\mathbf{A C}}{\mathrm{CH}}=\frac{\mathrm{AF}}{\mathrm{FG}}$
$\frac{A C}{21}=\frac{20}{15}$
$\therefore A C=\frac{21 \times 20}{15}=28$ units
$\therefore D B(=A C)=28$ units $\quad \ldots$ Diagonals of a rect. are $=$

$$
\therefore \mathrm{DM}=\frac{1}{2}(28)
$$

$=14$ units $<$

9.1 Theorem

RTP: $\hat{\jmath}+\hat{L}=180^{\circ}$

Construction:

Draw radii OK and OM
Proof:
$\hat{J}_{1}=\frac{1}{2} \hat{O}_{1}$ and $\hat{L}=\frac{1}{2} \hat{O}_{2}$ $\therefore \hat{J}_{1}+\hat{L}=\frac{1}{2}\left(\hat{O}_{1}+\hat{O}_{2}\right)$

But $\hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=360^{\circ}$
$\therefore \hat{\mathrm{J}}_{1}+\hat{\mathrm{L}}=\mathbf{1 8 0}<$
9.2

Diagonals of $a \|^{m}$ (and rectangle) bisect one another

$\angle{ }^{s}$ about point O
SBD and \hat{C} are supp. $\angle^{\text {s }}$
SCDB is a cyclic quad.
Here, we use the CONVERSE of the 'opp. \angle^{s} of c.q.' thm.
... CONVERSE of 'opp. \angle^{s} of cyclic quad.' theorem
9.2.3

$\hat{C}=A \hat{S} T-\hat{D}_{2} \quad \ldots$ ext. \angle of $\Delta S C D$

$$
=100^{\circ}-30^{\circ}
$$

$$
=70^{\circ}
$$

$$
\angle \text { at centre }=
$$

$2 \times \angle$ at circumferenc

$$
\text { We need to prove : } x+y \neq 90^{\circ}
$$

SBAD $(=x+y)=110^{\circ}$
opp. \angle^{s} of c.q. $S C D B$
$\therefore x+y \neq 90^{\circ}$

SD is not a diameter of circle BDS <

$$
\ldots \text { CONVERSE of }{ }^{\prime} \angle \text { in semi- } \odot^{\prime} \text { thm. }
$$

9.2.1
(a)
$\hat{\mathbf{B}}_{1}=x<\ldots<$
\angle^{s} in the same segment; chord ST subtends
(b) $\hat{\mathbf{B}}_{\mathbf{2}}=\mathbf{y}<\ldots$ exterior \angle of cyclic quadrilateral

9.2.2 Using 9.2.1 (a) \& (b): SBED $=x+y$

\& $\operatorname{In} \triangle \mathbf{A C R}: \hat{\mathrm{C}}=180^{\circ}-(x+y)$
sum of \angle^{s} of \triangle
In quadrilateral SCDB:

10.1.1 We need to prove that

$$
\hat{C}_{2}=\hat{A}_{1}
$$

We will use the
$\hat{D}_{2}=\hat{B} \quad \ldots \begin{gathered}\text { exterior } \angle \\ \text { of cyclic quad } .\end{gathered}$
$=\boldsymbol{x}$
$\therefore \quad \ln \triangle \mathrm{DMC}$:

$$
\hat{\mathrm{C}}_{2}=90^{\circ}-x \quad \ldots \text { sum of } \angle^{s} \text { of } \Delta
$$

But $\hat{A}_{1}=\hat{A}_{2} \ldots$ equal chords subtend equal angles
\& $\ln \triangle \mathrm{ACB}: \hat{\mathrm{A}}_{2}=90^{\circ}-x \quad \ldots$ sum of \angle^{s} of Δ

$$
\begin{aligned}
\hat{\mathrm{A}}_{1} & =90^{\circ}-x \\
\hat{\mathrm{C}}_{2} & =\hat{\mathrm{A}}_{1}
\end{aligned}
$$

MC is a tangent to the circle at $\mathrm{C}<$

CONVERSE of tan chord theorem

10.1.2 $\ln \Delta^{s}$ ACB and CMD
(1) $A \hat{C} B=\hat{M}\left(=90^{\circ}\right)$
given
(2) $\hat{A}_{2}=\hat{C}_{2}$ both $=90^{\circ}-x$ in 10.1.1
$\therefore \triangle A C B||\mid \triangle C D<$

$$
\cdot \angle \angle \angle
$$

10.2.1 $\frac{\mathrm{CM}}{\mathrm{DC}}=\frac{\mathrm{AC}}{\mathrm{AB}} \quad \ldots$ (1) \ldots similar Δ^{s} in 10.1 .2

But, in Δ^{s} CMD and AMC
(1) $\hat{M}\left(=90^{\circ}\right)$ is common
(2) $\hat{\mathrm{C}}_{2}=\hat{\mathrm{A}}_{1}$ proved in 10.1.1
$\triangle C M D||\mid A M C$ $\angle L \angle$

$$
\frac{C M^{2}}{D C^{2}}=\frac{\mathrm{AM}}{\mathrm{AB}}<
$$

10.2.2 $\quad \frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{CM}^{2}}{\mathrm{DC}^{2}} \quad \ldots$ proved in 10.2.1

But, in $\triangle \mathrm{DMC}: \frac{\mathrm{CM}}{\mathrm{DC}}=\sin x$
$\frac{A M}{A B}=\sin ^{2} x<$

$$
\begin{aligned}
& \frac{\mathrm{CM}}{\mathrm{DC}}=\frac{\mathrm{AM}}{\mathrm{AC}} \ldots 2 \quad \ldots\| \| \Delta^{s} \\
& \frac{C M}{D C} \times \frac{C M}{D C}=\frac{A C}{A B} \times \frac{A M}{A C} \quad \ldots \text { see } 1 \text { and (2) }
\end{aligned}
$$

The Proportion Theorem

A line parallel to one side of a triangle divides the other two sides proportionally.
i.e. $D E \| B C \Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$

Given: $\triangle A B C$ with $D E \| B C$,
$D \& E$ on $A B \& A C$ respectively.

To prove: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Join DC \& BE

$$
\text { Proof: } \quad \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle D B E}=\frac{\frac{1}{2} A D \cdot h}{\frac{1}{2} D B \cdot h}=\frac{A D}{D B}
$$

$$
\text { Similarly: } \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle E D C}=\frac{\mathrm{AE}}{\mathrm{EC}}\binom{\frac{1}{2} \mathrm{AE} \cdot \mathrm{~h}^{\prime}}{\frac{1}{2} \mathrm{EC} \cdot \mathrm{~h}^{\prime}}\binom{h^{\prime} \text { is the height of }}{\Delta^{s} A D E \text { and } E D C}
$$

The Similar $\Delta^{\mathbf{s}}$ Theorem

7
If two triangles are equiangular,
then their sides are proportional
and, therefore, they are similar.

Given:	$\triangle A B C \& \triangle D E F$ with $\hat{A}=\hat{D} \quad \hat{B}=\hat{E} \quad \& \quad \hat{C}=\hat{F}$
To prove:	$\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$

Construction: Mark $P \& Q$ on $D E \& D F$ such that $D P=A B \& D Q=A C$
Proof:
In $\Delta^{s} D P Q \& A B C$
(1) $\mathrm{DP}=\mathrm{AB} \quad \ldots$ construction
(2) $\mathrm{DQ}=\mathrm{AC} \ldots$ construction
(3) $\hat{D}=\hat{A} \quad \ldots$ given
$\therefore \triangle \mathrm{DPQ} \equiv \triangle \mathrm{ABC} \ldots S \angle S$

parallel lines

$$
\text { But } \begin{aligned}
D P & =A B \text { and } \\
D Q & =A C \quad \ldots \text { construction } \\
\therefore \frac{A B}{D E} & =\frac{A C}{D F}
\end{aligned}
$$

Similarly, by marking S and T on $D E$ and $E F$ such that $S E=A B$ and $E T=B C$, it can be proved that $: \frac{A B}{D E}=\frac{B C}{E F}$

$$
\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}<
$$

$\therefore \triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar.

Δ^{s} are similar if:

Similar Δ^{s}

A: they are equiangular, and
B: their sides are proportional

In this proof, we show that: $\mathbf{A} \Rightarrow \mathbf{B}$
i.e. Both conditions, \mathbf{A} and \mathbf{B}, apply
\therefore The Δ^{s} are similar

The converse statement says: $\mathbf{B} \Rightarrow \mathbf{A}$ i.e. Both conditions, \mathbf{A} and B, apply \therefore The Δ^{s} are similar

Compound Angle Formulae

1. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
2. $\sin (A-B)=\sin A \cos B-\cos A \sin B$
3. $\cos (A+B)=\cos A \cos B-\sin A \sin B$

Sign changes cosine of A and B first,
4. $\cos (A-B)=\cos A \cos B+\sin A \sin B$

We will prove formula no. 4 (see above) and then derive the other 3 from it.

Sign stays the same sine \& cosine of A and B mixed
5. $\sin 2 A=2 \sin A \cos A$
6. $\cos 2 A=\cos ^{2} A-\sin ^{2} A$
or $\cos 2 A=1-2 \sin ^{2} A$
or $\cos 2 A=2 \cos ^{2} A-1$

Proof of the Formula:

$\cos (A-B)=\cos A \cos B+\sin A \sin B$

First, an important concept!

NOTE: If OP = 1 unit! then: $\frac{x}{1}=\cos \theta$ and $\frac{y}{1}=\sin \theta$
i.e. $x=\cos \theta$ and $y=\sin \theta$
i.e. \mathbf{P} is the point $(\cos \theta ; \sin \theta)$

In the sketch alongside, $\hat{\mathbf{A}}$ and $\hat{\mathbf{B}}$ have been placed in standard position.

```
ROQQ = \hat{\mathbf{A}}\mathbf{-}\hat{\mathbf{B}}.
```

The coordinates of the points \mathbf{R} and \mathbf{Q}, both 1 unit from the origin, are:
$\mathbf{R}(\boldsymbol{\operatorname { c o s }} \mathbf{A} ; \boldsymbol{\operatorname { s i n }} \mathbf{A}) \& \quad \mathbf{Q}(\boldsymbol{\operatorname { c o s }} \mathbf{B} ; \boldsymbol{\operatorname { s i n }} \mathbf{B})$ See NOTE above

- Determine 2 expressions for $\mathbf{R Q}^{2}$

$$
\begin{align*}
\mathbf{R Q}^{2} & =1^{2}+1^{2}-2(1)(1) \cos (\mathrm{A}-\mathrm{B}) \\
& =2-2 \cos (\mathrm{~A}-\mathrm{B}) \tag{1}
\end{align*}
$$

\& $\mathbf{R} \mathbf{Q}^{\mathbf{2}}=(\cos \mathrm{A}-\cos \mathrm{B})^{2}+(\sin \mathrm{A}-\sin \mathrm{B})^{2} \ldots$ DISTANCE FORMULA

$$
=\cos ^{2} A-2 \cos A \cos B+\cos ^{2} B+\sin ^{2} A-2 \sin A \sin B+\sin ^{2} B
$$

$$
=2-2 \cos A \cos B-2 \sin A \sin B<\ldots 2 \sin ^{2} \theta+\cos ^{2} \theta=1
$$

- Equate the two expressions for RQ^{2} above:

Divide by -2 (or \times by $\left.-\frac{1}{2}\right): \quad \therefore \boldsymbol{\operatorname { c o s }}(\mathbf{A}-\mathbf{B})=\boldsymbol{\operatorname { c o s }} \mathbf{A} \boldsymbol{\operatorname { c o s }} \mathbf{B}+\boldsymbol{\operatorname { s i n }} \mathbf{A} \sin \mathbf{B}<$

$$
\begin{aligned}
& \text { (1) = 2 } \quad \therefore 2-2 \cos (A-B)=2-2 \cos A \cos B-2 \sin A \sin B \\
& \text { Subtract 2: } \quad \therefore-2 \cos (A-B)=-2 \cos A \cos B-2 \sin A \sin B
\end{aligned}
$$

QUADRILATERALS - definitions, areas \& propertios

All you need to know

'Any' Quadrilatera

Sum of the $\angle{ }^{\mathrm{s}}$ of any quadrilateral $=360^{\circ}$
$\left(\begin{array}{l}\text { Sum of the interior angles } \\ =(a+b+c)+(d+e+f) \\ =2 \times 180^{\circ} \quad \ldots\left(2 \Delta^{\mathrm{s}}\right)\end{array}\right)$ $=2 \times 180$
$=360^{\circ}$

The arrows indicate various 'pathways from 'any quadrilateral to the square (the 'ultimate quadrilateral'). These pathways, which combine logic and fact, are essential to use when proving specific types of quadrilaterals.
ee how the properties accumulate as we move from left to right, i.e. the first quad. has no special properties and each successive quadrilateral has all preceding properties

DEFINITION:
Quadrilateral with 1 pair of opposite sides ||

DEFINITION:
Quadrilateral with 2 pairs opposite sides ||

$$
\begin{aligned}
& I^{m} \mathrm{ABCD}=\mathrm{ABCQ}+\triangle \mathrm{QCD}
\end{aligned}
$$

$$
\text { rect. } \mathrm{PBCQ}=\mathrm{ABCQ}+\triangle \mathrm{PBA}
$$

$$
\text { where } \triangle \mathrm{QCD} \equiv \triangle \mathrm{PBA} \ldots R H S / 90^{\circ} H S
$$

$$
\therefore \|^{m} A B C D=\text { rect. PBCQ (in area) }
$$

$$
=B C \times Q C
$$

Properties:
2 pairs opposite sides equal
2 pairs opposite angles equal
\& DIAGONALS BISECT ONE ANOTHER

DEFINITION:

Quadrilateral with 2 pairs of
adjacent sides equal

Given diagonals a and b
Area $=2 \Delta^{\mathrm{s}}=2\left(\frac{1}{2} \mathrm{~b} \cdot \frac{\mathrm{a}}{2}\right)=\frac{\mathrm{ab}}{2}$
'Half the product of the diagonals'

THE DIAGONALS

- cut perpendicularly
- one diagonal bisects the other diagonal, the opposite angles and the area of the kite

A Rectangle

DEFINITION

$\mathrm{A} \|^{\mathrm{m}}$ with one pair of
adjacent sides equal

Area

$=\frac{1}{2}$ product of diagonals (as for a kite)
or
$=$ base \times height (as for a parallelogram)

THE DIAGONALS

- bisect one another PERPENDICULARLY
- bisect the angles of the rhombus
- bisect the area of the rhombus

Note:

$2 x+2 y=180^{\circ} \ldots \quad \angle^{s}$ of Δ or

The Square

Properties:
It's all been said 'before'!
Since a square is a rectangle, a rhombus, a parallelogram, a kite, . . . ALL the properties of these quadrilaterals apply.
sides

angles

Quadrilaterals play a prominent role in both Euclidean \& Analytical Geometry right through to Grade 12!

CONGAVITY \& THE POINTT OF INFLEGTION

The Concavity of cubic graphs: Concave up or Concave down \cap, changes at the point of inflection: As \boldsymbol{x} increases (i.e. from left to right) ...

GROUPING OF GIRCLE GEOMETRY THEOREMS

The grey arrows indicate how various theorems are used to prove subsequent ones

\qquad

The
TNo Centre'
group

III The 'Cyclic Quad.' group
 ```'Cyclic Quad.' \\ group```

Equal chords subtend equal angles and, vice versa,
equal angles are subtended by equal chords.
IV
The
'Tangent'
group

[^0]: Questions marked with an asterisk (*) were identified as challenging . . ave performance < 40\%

