Mathematics

TEST & EXAM PREPARATION

Anne Eadie & Gretel Lampe

Grade 9 Mathematics 2-in-1 CAPS

TEST & EXAM PREPARATION

This Answer Series Grade 9 Maths 2-in-1 study guide offers carefully selected exercises, detailed solutions and constant guidance to walk you through the Grade 9 CAPS curriculum. The exercises are graded in difficulty, taking you from fundamentals all the way up to advanced work in manageable steps. You receive answers with full details and reasoning, allowing you to self-correct and improve along the way.

This 2-in-1 publication includes:

- Topic-based graded questions and full answers to develop a step-by-step, thorough understanding of theory, techniques and concepts in every topic.
- Exam papers with full, detailed solutions.

Key features:

- Comprehensive examples and study tips for each topic
- Detailed solutions for all exercises
- Exam Papers with detailed memos to put theory into practice and reinforce concepts in an exam format.

No matter your level of confidence in the subject, this study guide can enable you to perform beyond expectations, all the while preparing you for the next year's challenges.

GRADE GO CAPS 2-in-1

Mathematics

Anne Eadie & Gretel Lampe

Also available

GRADE 9 MATHS COMPANION

Workbook 1: Terms 1 & 2 Workbook 2: Terms 3 & 4 & Answer book

THIS STUDY GUIDE INCLUDES

2

Questions in Topics

Examination Papers

Detailed solutions are provided for both sections

CONTENTS

ΤΟΡΙΟ	;-B/	ASED QUESTIONS						Questions	Answers
		Qu	estions	Answers	PAPER	14	Functions & Relationships (Part 2)	50	A60
PAPER	1	Numbers	1	A1		15	Algebraic Expressions (Part 2 – <i>with factors</i>)	51	A60
1	2	Problem Solving	4	A6			(Full 2 Winguetors)	51	700
	3	Finance	6	A8		16	Algebraic Equations (Part 2 – <i>with factors</i>)	52	A65
	4	Exponents	12	A13		17	Graphs	55	A69
	5	Numeric & Geometric Patterns	16	A21					
	6	Functions & Relationships (Part 1)	19	A23	PAPER 2	18	Volume & Total Surface Area of 3D Objects	60	A76
	7	Algebraic Expressions (Part 1 – no factor)	s) 20	A24		19	Transformation Geometry	63	A79
	8	Algebraic Equations (Part 1 – no factor	s) 23	A29		20	Geometry of 3D Objects	68	A82
PAPER	9	Constructions	25	A34		21	Data Handling	69	A83
2	10	Geometry of 2D Shapes	30	A41				05	705
	11	Geometry of Straight lines	38	A49	PAPER 1	22	Probability	73	A87
	12	The Theorem of Pythagoras	41	A52					
	13	Area & Perimeter of 2D Shapes	43	A53			am Papers am Memos		ge E1 ge M1
Ť		EUCLIDEAN GEOMETRY: THEORE D ACCEPTABLE REASONS at the bo					blem Solving: Questions blem Solving: Answers	PS [,] PS	
1							NICH VOITING ANSWEIS		- bab

Amended Teaching Plan for 2023/2024

QUESTIONS

Ex 4.1

EXPONENTS:

12

Mixed Questions5.3
$$\sqrt{\frac{4a^3}{a^3}}$$
(2)A Summary of the Laws of Exponents
using algebra (letters)
 $a^m \times a^n = a^{m-n}$
 $(a^m)^n = a^m$
 $(a^m)^n = a^$

(3)

(1)(1)

(2)

(10)

opying of this material is illegal

 $\frac{y}{x}$

6*x*⁴

 $18x^{4}$

 $\frac{8a^4}{b^6}$

 $-rac{1}{4}$

1

 $rac{1}{\mathsf{ab}}$

 $\frac{1}{a} + \frac{1}{b}$

 $\frac{64^2a^{32}}{b^{72}}$

cannot be simplified

QUESTIONS		The following state In each case correct	t the right h	nand side.	Substitution	n 🖏			1.13	$\left(\frac{1}{3}\right)^{x} = 3$	1.14	9 ^x = 27	(2)(3)
QUES		10.1 $x^2 + x^2 = 2x^4$	10.2	$\frac{1}{6x^{-2}} = 6x^2$ (1)(1)	Exercise 4.2	ě	Answers of	on p. A18	1.15	2 ^{<i>x</i>} = 0,125	1.16	5 ^{<i>x</i>} = 0,04	(3)(3)
0	11.	State whether the sare True or False.	following		1. Calculate the va	alue of $a \times b^c$,			1.17	$3^{2x+1} = 3^{x+3}$	1.18	$2^{x} \cdot 2^{3} = 32$	(2)(3)
		Give the correct so	lution whe	re false.	a = 3, b = 2 ai	nd c=-1.		(3)	1.19	$\left(4^{x}\right)^{2} = 64$	1.20	$\frac{5^x}{5^2} = 125$	(3)(3)
		EXPRESSION	TRUE OR FALSE	CORRECT SOLUTION, IF FALSE	2. Calculate the va a = 1, b = 5 ar		vhere	(3)	1.21	$8^{x+1} = \frac{1}{8}$	1.22	$7^{x-2} = 1$	(3)(2)
		a -3 1	FALSL		3. Calculate the va		, where		1.23	$9^{\chi - 2} = 81$	1.24	$x^3 = -8$	(3)(2)
	11.1	$2a^{-3} = \frac{1}{2a^3}$			a = 2, b = -1	and c = 3.		(3)	1.25	$2x^3 = 54$	1.26	$x = \sqrt[3]{27}$	(3)(3)
	11.2	$(-1)^5 = -1$					The second second		1.27	$x^{-1} = \frac{1}{2}$	1.28	$x^{-2} = \frac{4}{9}$	(2)(3)
	11.3	$(2ab^3)^3 = 6a^3b^9$		571	Exponentia	l Equation	ns ႃ		2.	Determine the value	of r if l	$(n^{x})^{3} - n^{2} n^{4}$	(2)
	11.4	a ⁰ = 0			Exercise 4.3		Answers of Remember the exponent	to use		Determine the prod			
x 4.3	11.5	$2^{-1} = -2$			Solve for x in each	11	where nece			where <i>x</i> and y are n	atural nui	mbers.	(3)
4.2/Ex	11.6	$a^{-3}a^2 = \frac{1}{2}$			following equations	:	5			Determine which sig			aced
EX 4		1			1.1 $2^x = 2^3$	1.2	$5^{x-1} = 5^2$	(1)(1)		in each empty box if	x = 3 ar	nd y = -2.	
4.1/Ex	11.7	$\left(\frac{3}{4}\right)^{-1} = \frac{4}{3}$		E	1.3 $3^{2x} = 3^6$	1.4	$3^{x} = 9$	(1)(1)		4.1 $y^2 \square x^2$			(2)
S: Ex	11.8	$\frac{a^3b^5}{ab^7} = \left(\frac{a}{b}\right)^2$			1.5 $8^x = 64$	1.6	$2^{x} = \frac{1}{4}$	(1)(1)		4.2 $(3^x)^3 \square (y^2)^2$			(2)
NENT		$2^3 \times 2^4 = 4^7$			1.7 $7^x = 1$	1.8	$5^{2x} = 5$	(1)(1)		4.3 $(x \cdot y)^4 \square$ (4)	хγ		(2)
EXPONENT	11.1	$5^2 \div 5^5 = \frac{1}{5^3}$			1.9 $11^x = 121$	1.10	7 ^{<i>x</i>} = 49	(1)(1)					
4		5~		(10)	1.11 $3^{x-2} = 81$	1.12	10 ^x = 0,1	(2)(2)					

FUNCTIONS & RELATIONSHIPS (Part 1)

Exercise 6.1

(4)

(2)

(2)

1. Write down the values of a, b, c and d.

- 2.1 Fill in the operations at a and b.
- 2.2 Write down the value of c.
- Determine the output values for the following 3. flow diagram:

Study the table below and answer the questions 4. that follow:

Input (<i>x</i>)	1	2	3	4	5	6
Output (y)	4	7	10			

(2)

(2)

(2)

(2)

(3)

(2)

(2)

(2)

- Complete the table. 4.1
- Draw an input-output flow diagram 4.2 including a formula to describe the relationship between these input and output values, i.e. to illustrate the rule.
- Is this a linear function? 4.3 Give a reason for your answer.
- Given the formula, y = 3x 4, copy and 5. complete the following table :

-2	-1	0	1	2
,				

Study the table below and answer the questions 6. that follow:

Input (x)	1	2	3	4	5	6
Output (y)	5	2	-1	р	q	r

- Write down the values of **p**, **q** and **r**. 6.1
- 6.2 Write down a formula to describe the relationship between the input and output values.
- Draw an input-output flow diagram 6.3 to illustrate the rule.
- 6.4 Is this a linear function? Give a reason for your answer.

7.	Study the following table:								ñ		
	x	-2	-1	0	1	3	;	C'			
	У	-3	-1	1	3	7	,	v	le le	هم	
	7.1Do the points form a linear or non-linear function? Give a reason.(2)										
	7.2Write down a formula to determine the relationship between x and y.(2)										
8.	Use the equation $y = -2x + 3$ to complete the row of y-values in the following table. (3)										
	x	-4	-1	0	2	5	;	8	T	\mathbb{D}	
	У										
9.	Which relatio			ving eq en x ar						9 (1)	
	y =	= <i>x</i> – 1	;	$y = x^2 - x^2$	- 1	; y	x = 2x	c ² – 2	2		
			x	1	2	3	7	The second			
			у	0	3	8					
10.	10. Water is pumped from a dam into a reservoir. The following table of values represents the volume (V) of water in the reservoir at any given time (t).										
	Time	(t) in r	ninute	es	10	20	30	40	50	60	
	Volur	ne (V)	in kilo	litres	7	12	17	22	27	32	
	10.1 What is the increase in volume every										

- 10 minutes? 10.2 Hence determine the rate of increase in kilolitres per minute. 10.3 Write down a formula that could be
- used to determine the volume of water in the reservoir at any given time.

6

(1)

(3)

(2)

QUESTIONS

QUADRILATERALS - pathways of definitions, areas and properties - A Summary

QUESTIONS

QUADRILATERALS

9

LINES

STRAIGHT

ЦO

GEOMETRY

QUESTIONS

18 VOLUME & TOTAL SURFACE AREA OF 3D OBJECTS: FORMULAE

Small unit **→** big unit: ÷ \Rightarrow small unit: \times Big unit **Total Surface Area (TSA)** divide $\div (1 \ 000)^2$ $\div (100)^2$ $\div (10)^2$ dam² dm² hm² m² cm² mm² $\times (100)^2$ $\times (10)^{2}$ $\times (1 \ 000)^2$ multiply Since the area is the product of **2D** lengths, we need to \times or \div by the (conversion factor)². Volume divide $\div (100)^3$ $\div (10)^{3}$ m³ dm³ cm³ mm³ $\times (100)^{3}$ $\times (10)^{3}$ multiply Since volume is the product of **3D** lengths,

SI Units & Conversions

we need to \times or \div by the (conversion factor)³.

FORMULAE **OBJECTS:** 30 ЦO **SURFACE AREA** TOTAL ø VOLUME 18

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 21.0 & \frac{g^2}{g^3} \frac{g^3 y^2}{g^3 x^2 y^4} & & \\ & \frac{g^4}{g^3} \frac{g^3 x^3 y^4}{g^3 x^3 y^4} & & \\ & \frac{g^4}{g^4 x^2 y^4} & & \\ & \frac{g^4 x^2}{g^4 x^3 y^3} & & \\ & \frac{g^4 x^2}{g^4 x^3 y^3} & & \\ & \frac{g^4 x^2}{g^4 x^3 y^4} & & \\ & \frac{g^4 x^2}{g^4 x^4 y^4} & & \\ & \frac{g^4 x^2}{g^4 x^4 y^4} & & \\ & \frac{g^4 x^2}{g^4 x^4 y^4} & & \\ & \frac{g^4 x^4}{g^4 x^4} & & \\ & \frac{g^4 x^4}{g^4 x^4$$

Copyright © The Answer Series: Photocopying of this material is illegal

4

$$\begin{array}{c} \hline \textbf{Cuestions extending to Laws 5 & 6 \\ 4.1 & \frac{x^{3}}{y^{4}} = \frac{x^{3}}{x^{3}} & \dots & \frac{x^{3} - \frac{1}{x^{2}} d}{y^{-4}} - \frac{1}{y^{4}} & \frac{1}{y^{-4}} - \frac{1}{y^{4}} \\ 4.2 & \frac{m^{3} n^{2} n^{2}}{m^{3}} & \frac{1}{4} & \frac{1}{3} & \frac{1}{x^{3} - \frac{1}{x^{2}}} \\ = \frac{m^{4} n^{4} - \frac{1}{x^{3}} & \frac{1}{y^{-4}} - \frac{1}{y^{4}} \\ \frac{m^{5} n^{2}}{n^{3} - \frac{1}{x^{3}}} & \frac{1}{x^{3} - \frac{1}{y^{-4}}} & \frac{1}{x^{3} + \frac{1}{y^{4} - \frac{1}{x^{3}}} \\ = \frac{m^{4} n^{4} - \frac{1}{n^{3} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{m^{5} - \frac{1}{(1)}}{n^{3} - \frac{1}{x^{2}}} & \frac{1}{x^{3} + \frac{1}{y^{4} + \frac{1}{x^{3}}} \\ = \frac{1}{n^{3} - \frac{1}{n^{3} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{1}{n^{3} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{1}{n^{4} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{1}{n^{4} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{1}{n^{4} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{1}{n^{4} - \frac{1}{x^{3}}} & \frac{1}{x^{3} + \frac{1}{y^{4}}} \\ = \frac{1}{n^{4} + \frac{1}{x^{3}}} \\ = \frac{1}{n^{4} + \frac{1}{x^{3}}} & \frac{1}{1} \\ = \frac{1}{n^{4} + \frac{1}{x^{3}}} \\ = \frac{1}{n^{4} + \frac{1}{x^{3}}}} \\ = \frac{1}{n^{4} + \frac{1}{x^{3}}} \\ = \frac{1}{n^$$

ANSWERS

Ex 4.1

EXPONENTS:

4

Copyright $\ensuremath{\mathbb{C}}$ The Answer Series: Photocopying of this material is illegal

PAPER D1		1.6	The ratio $\frac{2}{5} : \frac{4}{6} : \frac{7}{15}$ simpl	ifies to:			ESTION Solve the	4 e following equations :	
	Answers on p. M10		A 2:4:7	$B \frac{12}{30} : \frac{20}{30} : \frac{14}{30}$				0 - 3x = 1	(2
Approved scientific calculator and non-graphical)	rs (non-programmable		C 12:20:14	D 6:10:7	(2) [9]			f(x+2) = 2 - 1(x+4)	(4
QUESTION 1		-	ESTION 2				4.1.3 3	$x(x+2) = 2x^2 + 12 + x^2$	(3
Four options are given for each of	the following questions	2.1	Determine the following p	roducts:	(1)		4.1.4 2	$\frac{2x}{4} + \frac{1}{3} = \frac{-4}{6}$	(4
Only one answer is correct. Write the question number, e.g. 1.7 A.	01		2.1.1 $3x(y+4z)$ 2.1.2 $(2x+1)^2$		(1) (2)		4.1.5 2	$\frac{2x^2 + x}{x} = \frac{4x^2 + 3}{2x}$	(2
			2.1.3 $(2x-1)(3x+2)$		(2)			x 2x	(.
1.1 Simplify: $2x - x(x + y) = .$ A $x^2 + xy$			2.1.4 $(2x-5)(x-3) + (x-3)$	$(x+2)^0 - (x-2)^2$	(6)	4.2		er is very fussy about which colour as she eats. Her favourite colour is	
C $x^2 - xy$		2.2	Simplify the following:				orange, a	and her least favourite is yellow.	
1.2 The number 1 is NOT a(n).			2.2.1 $10x^3 \div \frac{1}{2}x^2$		(2)			e x + 9 orange jellybeans in a packet 3 yellow jellybeans in the same	
	3 whole number D integer (1)		2.2.2 $(2x^2 \times \frac{1}{4}xy \times 8x^6)$	$(3x \times 4y)$	(3)			n which there is a total of $2(x + 8)$ ye age jellybeans.	llow
1.3 All the fractions can be writ			2.2.3 $\frac{6x^2 - 24}{3x^2 + 6x}$	633	(4)			et up an equation that represents he above paragraph.	(2
	3 decimal							low many of her favourite jellybeans	
C ratio	D option A; B and C (1)		2.2.4 $\frac{2x^2 \times 4y}{3y^2 \times 4x} + \frac{2x^2 \times 4y}{2x \times 9}$		(4)		d	lid Mrs Foster get in the packet If sweets?	(3
1.4 $\sqrt{\frac{16x^4}{y^{16}}} = \dots$ A $\frac{4x^2}{y^4}$	$\frac{8x^2}{y^8}$	2.3	An isosceles triangle is conconnecting three lines, two to $2x^2 + 2x$. Determine the remaining side in terms of of the triangle is equal to 7	o of which are equal e length of the x if the perimeter		4.3	Mrs Louv after lool that they ratio of g	w loves her girls hockey team and king at their season she decided had an excellent season as the games won to games lost was 5 : 1. of x, they only lost x + 4 games.	(5
$C = \frac{8x^2}{y^4}$	$D = \frac{4\chi}{\gamma^8} $ (2)	QU	ESTION 3					Determine, in terms of <i>x</i> , how many	
1.5 What is the missing number	in the sequence?	Fact	orise the following expressio	ons:			g	ames the girls won.	(2
2 ; 5 ; 10 ; ; 26		3.1	$2x^2 + 14x$ 3.2	$x^4 - 16$	(2)(3)			Jsing your answer in Question 4.3.1	
A 15	3 25	3.3	$4x^2 - 36$ 3.4	$x^2 + 7x + 12$	(3)(2)			letermine how many matches the irls played if in terms of <i>x</i> they	
C 17	0 20 (2)	3.5	$(2x - 3y)x^2 + (3y - 2x)$		(4) [14]		-	layed a total of $10x$ games.	(4) [28

Copyright © The Answer Series: Photocopying of this material is illegal

(2) (4)

(3)

(4)

(4)

(2)

(3)

(2)

(4) [28]

M10

EUCLIDEAN GEOMETRY

THEOREM STATEMENTS & ACCEPTABLE REASONS

LINES

SENIOR PHASE

The adjacent angles on a straight line are supplementary.	\angle^{s} on a str line			
If the adjacent angles are supplementary, the outer arms of these angles form a straight line.	adj ∠ ^s supp			
The adjacent angles in a revolution add up to 360°.	\angle^{s} around a pt OR \angle^{s} in a rev			
Vertically opposite angles are equal.	vert opp \angle^{s}			
If AB CD, then the alternate angles are equal.	alt ∠ ^s ; AB CD			
If AB CD, then the corresponding angles are equal.	corresp ∠ ^s ; AB CD			
If AB CD, then the co-interior angles are supplementary.	co-int ∠ ^s ; AB CD			
If the alternate angles between two lines are equal, then the lines are parallel.	alt ∠ ^s =			
If the corresponding angles between two lines are equal, then the lines are parallel.	corresp ∠ ^s =			
If the co-interior angles between two lines are supplementary, then the lines are parallel.	co-int ∠ ^s supp			

TRIANGLES

The interior angles of a triangle are supplementary.	\angle sum in \triangle OR sum of \angle ^s in \triangle OR int \angle ^s in \triangle		
The exterior angle of a triangle is equal to the sum of the interior opposite angles.	$ext \ \angle \ of \ \Delta$		
The angles opposite the equal sides in an isosceles triangle are equal.	\angle^{s} opp equal sides		
The sides opposite the equal angles in an isosceles triangle are equal.	sides opp equal \angle^{s}		
In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.	Pythagoras OR Theorem of Pythagoras		
If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.	Converse Pythagoras OR Converse Theorem of Pythagoras		
If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.	SSS		
If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.	SAS OR S∠S		

If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.	AAS OR ∠∠S				
If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.	RHS OR 90⁰HS				
QUADRILATERALS					
The interior angles of a quadrilateral add up to 360°.	sum of \angle^{s} in quad				
The opposite sides of a parallelogram are parallel.	opp sides of m				
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.	opp sides of quad are OR converse opp sides of m				
The opposite sides of a parallelogram are equal in length.	opp sides of m				
If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram.	opp sides of quad are = OR converse opp sides of a parm				
The opposite angles of a parallelogram are equal.	opp ∠ ^s of m				
If the opposite angles of a quadrilateral are equal then the quadrilateral is a parallelogram.	opp ∠ ^s of quad are = OR converse opp angles of a parm				
The diagonals of a parallelogram bisect each other.	diag of m				
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.	diags of quad bisect each other OR converse diags of a parm				
If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram.	pair of opp sides = and				
The diagonals of a parallelogram bisect its area.	diag bisect area of m				
The diagonals of a rhombus bisect at right angles.	diags of rhombus				
The diagonals of a rhombus bisect the interior angles.	diags of rhombus				
All four sides of a rhombus are equal in length.	sides of rhombus				
All four sides of a square are equal in length.	sides of square				
The diagonals of a rectangle are equal in length.	diags of rect				
The diagonals of a kite intersect at right-angles.	diags of kite				
A diagonal of a kite bisects the other diagonal.	diag of kite				
A diagonal of a kite bisects the opposite angles.	diag of kite				