Mathematics

TEST \& EXAM PREPARATION

CAPS
Anne Eadie \& Gretel Lampe

2-in-1

Grade 9 Mathematics 2-in-1 CAPS

TEST \& EXAM PREPARATION

This Answer Series Grade 9 Maths 2-in-1 study guide offers carefully selected exercises, detailed solutions and constant guidance to walk you through the Grade 9 CAPS curriculum. The exercises are graded in difficulty, taking you from fundamentals all the way up to advanced work in manageable steps. You receive answers with full details and reasoning, allowing you to self-correct and improve along the way.

This 2-in-1 publication includes:

- Topic-based graded questions and full answers - to develop a step-by-step, thorough understanding of theory, techniques and concepts in every topic.
- Exam papers with full, detailed solutions.

Key features:

- Comprehensive examples and study tips for each topic
- Detailed solutions for all exercises
- Exam Papers with detailed memos - to put theory into practice and reinforce concepts in an exam format.

No matter your level of confidence in the subject, this study guide can enable you to perform beyond expectations, all the while preparing you for the next year's challenges.

Anne Eadie \& Gretel Lampe

2-in-1

THIS STUDY GUIDE INCLUDES

Also available

GRADE 9
MATHS COMPANION
Workbook 1: Terms 1 \& 2
Workbook 2: Terms 3 \& 4
\& Answer book

CONTENTS

TOPIC-BASED QUESTIONS

Questions Answers

PAPER 1	Numbers	1	A1
	Problem Solving	4	A6
	Finance	6	A8
	Exponents	12	A13
	Numeric \& Geometric Patterns	16	A21
	Functions \& Relationships (Part 1)	19	A23
	Algebraic Expressions (Part 1 - no factors)	20	A24
	Algebraic Equations (Part 1 - no factors)	23	A29
PAPER 2	Constructions	25	A34
	Geometry of 2D Shapes	30	A41
	Geometry of Straight lines	38	A49
	The Theorem of Pythagoras	41	A52
	Area \& Perimeter of 2D Shapes	43	A53

See EUCLIDEAN GEOMETRY: THEOREM STATEMENTS AND ACCEPTABLE REASONS at the back of the book.

Amended Teaching Plan for 2023/2024

TERM 1

(1)

4
Exponents 12
(5)

Numeric \& Geometric Patterns16

TERM 2

7
\& 15
Algebraic Expressions 20 \& 51
(8)

Algebraic Equations
23 \& 52
(6)

Functions \& Relationships

TERM 3

Graphs 55
(11)

Geometry of Straight Lines 38

Geometry of 2D Shapes \& Construction of Geometric Figures

TERM 4

Transformation Geometry
Area \& Perimeter of 2D Shapes

Topics not in the ATP 2023/2024

Problem SolvingFinance 6
12 The Theorem of Pythagoras4120 Geometry of 3D Objects68
21 Data Handling 69
(22) Probability 73
$1.4 \quad 2^{5} \div 2^{2} \quad 1.5 \frac{p^{7}}{p^{3}} \quad 1.6 \frac{a^{2}}{a^{-1}} \quad(1)(2)(2)$

$$
\text { Law 3: }\left(a^{m}\right)^{n}=a^{m n}
$$

$1.7 \quad\left(2^{3}\right)^{2}$
$1.8 \quad\left(s^{3}\right)^{5} \quad 1.9 \quad\left(3^{x}\right)^{2}$
$(1)(1)(1)$

Law 4: $(a b)^{m}=a^{m} b^{m}$
$1.10(2 \times 5)^{2}$
$1.11\left(3 x^{3}\right)^{3}$
(2)(3)
$1.12\left(-4 a^{5} b^{3}\right)^{2}$
Copyright © The Answer Series: Photocopying of this material is illegal
(1)(1)
(2)

$$
\text { Law 6: } a^{-n}=\frac{1}{a^{n}} ; a \neq 0
$$

$1.16 \quad 2^{-3}$
$1.17 x^{-4}$
$1.18 a^{3} \cdot b^{-4}$

Note

$(-3)^{2}=9$ but $-3^{2}=-9$

$$
(-3)^{0}=1 \text { but }-3^{0}=-1
$$

Now combine the laws...
Simplify the following as far as possible Where applicable, leave the answer with positive exponents

$$
\text { Questions including Laws } 1 \text { \& } 2
$$

2.1	3 a .2 ab .3 abc	2.2	$2 x^{3} \times-3 x^{5}$
2.3	$2 \mathrm{a}^{4} \times 4 \mathrm{a}^{2}$	2.4	$\mathrm{a}^{-4} \times \mathrm{a}^{7}$
2.5	$x^{3}\left(x^{2}\right)^{3} x^{0} x^{-2}$	2.6	$6 a^{5} \times \mathrm{a} \div 3 \mathrm{a}^{2}$
2.7	$5 x^{3} \mathrm{y}^{5} \times 3 x^{-2} \mathrm{y}^{2}$	2.8	$8 \mathrm{y}^{3} \times \frac{1}{4} \mathrm{y}^{2}$
2.9	$\frac{a^{3} \cdot b^{2} \cdot c}{a \cdot b^{2} \cdot c^{3}}$	2.10	$\frac{5^{2} \cdot 5^{3} x^{2} y^{4}}{5^{6} x^{3} y^{2}}$
2.11	$\frac{3 a b^{4} c^{0}}{18 a^{2} b c}$	2.12	$\frac{4 x^{3} y^{7}}{8 x^{2} y^{9}}$

(2)(2)
(2)(1)
(2)(3)
(2)(2)
(2)(3)
(2)(2)

$$
\begin{align*}
& 2.13 \frac{8 b^{-3} c^{5}}{12 b^{2} c^{-6}} \quad 2.14 \frac{121 x^{7} y^{13}}{11 x^{-4} y^{2}} \tag{3}\\
& 2.15 \frac{55 x^{3} y^{12}}{11 x^{-2} y^{17}} \quad 2.16 \frac{15 x y^{-2}}{3 x^{-3} y^{4}} \\
& 2.18 \frac{-39 x^{17} y^{10}}{-3 x^{4} y^{-3}}
\end{align*}
$$

Questions extending to Laws 3 \& 4

3.1	$\left(-3 x^{2}\right)^{2}$	3.2	$\left(-3 x^{4}\right)\left(2 x^{3}\right)$	$(2)(2)$
3.3	$\left(2^{3} x^{2} y\right)^{3}$	3.4	$\left(3 p^{5} q^{3}\right)^{2}$	$(3)(3)$
3.5	$4(-a)^{2}-(-2 a)^{2}$	3.6	$x^{-7}\left(x^{13}+x^{11}\right)$	(3)(3)
3.7	$\frac{a b^{2} \times a^{3} b}{\left(a^{2} b^{2}\right)^{2}}$	3.8	$\frac{a b\left(-2 a^{2} b^{3}\right)^{3}}{-56 b^{3}}$	(3)(4)
3.9	$\frac{\left(3 m^{3} n\right)\left(-2 m n^{4}\right)}{(-2 m n)^{4}}$	3.10	$\frac{\left(x^{2} y\right) \times\left(x^{3} y^{3}\right)}{\left(x^{2} y\right)^{3}}$	(4)(3)

Questions extending to Laws 5 \& 6
$4.1 \quad \frac{x^{-3}}{y^{-4}}$

$$
\begin{equation*}
4.2 \frac{\mathrm{~m}^{5} \cdot \mathrm{n}^{-2} \cdot \mathrm{p}^{(}}{\mathrm{m} \cdot \mathrm{n}^{3}} \tag{3}
\end{equation*}
$$

$4.3 \quad \frac{x \cdot y^{-2}}{x^{0} \cdot y}$
$4.4 \frac{x^{0}}{0,25}$
(4)

A Summary of the Laws of Exponents using algebra (letters)

```
\(a^{m} x a^{n}=a^{m+n}\)
\(a^{m} \div a^{n}=a^{m-n}\)
    \(\left(a^{m}\right)^{n}=a^{m n}\)
\((a \times b)^{n}=a^{n} \times b^{n}\)
\(a^{0}=1\)
\(a^{-n}=\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}\)
\(a^{0}=1\)
\(a^{-n}=\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}\)
```

Evaluate the following without the use of a calculator

$$
\begin{array}{ll}
5.1 & 3^{-2}+3^{0}+3^{2} \\
5.2 & -5^{2} \div \sqrt[3]{-1} \\
5.3 & \sqrt{3^{2}+3^{1}+3^{0}+3^{-1}+3^{-2}} \\
5.4 & \sqrt[3]{27}-\sqrt{49}+4 \\
5.5 & \sqrt{9+16} \\
5.6 & \sqrt{\frac{18}{2}}-(-2)^{3} \\
5.7 & \sqrt[3]{\frac{27}{8}}+\sqrt{2 \frac{1}{4}}
\end{array}
$$

Remember to use

$$
\begin{aligned}
& \text { Rem exponent laws } \\
& \text { the expone }
\end{aligned}
$$

Simplify, leaving the answer with positive exponents where applicable

$$
\begin{array}{llll}
5.8 & \sqrt{36 x^{36}+64 x^{36}} \quad 5.9 & \sqrt{9 x^{10}+16 x^{10}} \\
5.10 & \sqrt{144 a^{6} b^{10}} \cdot\left(-2 a b^{2}\right) & \\
5.11 & \sqrt{9(a+2 b)^{2} x^{4}} & 5.12 & \sqrt{169 x^{14} y^{22}}
\end{array}
$$

$5.13 \sqrt{\frac{4 a^{3}}{a^{9}}}$
(2)
$5.14\left(\frac{5 x^{-1}}{2}\right)^{-1} \cdot \sqrt{25 x^{4} y^{-2}}$
$5.15 \sqrt{\frac{\left(a b^{2}\right)^{3}}{a(-4 c)^{2}}}$

$5.16 \frac{\left(3 x^{5} y^{-3}\right)^{2}}{-6 y^{5}} \times \frac{2 x^{-4}}{x^{0}}$
$5.17 \quad \frac{2 x y^{2}}{3 m} \div \frac{4 y^{2}}{9 x m}$
$5.18 \frac{3 x}{y^{2} z^{3}} \div \frac{9 x^{2}}{2 y z^{4}}$
$5.19 \frac{\left(2 a^{2}\right)^{4}}{4 a^{4}} \times \frac{\left(a^{2} b^{3}\right)^{2}}{\left(b^{2} c\right)^{3}}$
$5.20 \frac{\left(2 a^{2} b^{3}\right)^{4} \times\left(8 a b^{-2}\right)^{2}}{4 a b^{5} \times 12 a^{9} b^{7}}$
$5.21 \frac{\left(5 x^{-3} y\right)^{2}}{4 x y \times\left(x^{2} y\right)^{2}} \div\left(\frac{5 x y}{2}\right)^{2}$
$5.22 \frac{x y^{3}}{x^{2}} \div \frac{x^{3} y}{x^{4}} \times \frac{x^{0}}{x^{2} y}$
$5.23 \frac{x^{2} y^{3}}{x^{4}} \times \frac{x^{3} y^{4}}{y^{7}} \div \frac{x^{2}}{x^{3}}$
$5.24 \frac{x^{4} y}{y^{0}} \div \frac{x y^{3}}{x^{2}} \div \frac{x^{2} y^{3}}{x^{-3} y^{4}}$
$5.25 \frac{\sqrt{49 a^{6} b^{-2}} \cdot\left(3 a^{2} b^{-1}\right)^{-2}}{2 a^{0} b^{-3}}$
(4)
6.1 Determine which of the following has the largest value (you may use a calculator):

$$
\left(\frac{1}{7}\right)^{-7} \quad 7^{\frac{10}{7}} \sqrt[7]{777777} \quad 777,777^{\frac{1}{7}} \quad 0,7^{-0,7}
$$

6.2 Now, without the use of a calculator, determine which is larger: 2^{-5} or 5^{-2} ?
7. Round off each of the following to three dec. places.

$$
\begin{equation*}
7.1 \pi \times \sqrt[5]{237} \quad 7.2\left(\frac{1}{7}\right)^{-7} \times 0,135 \tag{1}
\end{equation*}
$$

8. Express the number 32 as a power with
a base of 4. [Hint: Remember: $2^{2}=4$]
9. For each of the following questions, four options have been given for the answer.
Only one of the options provided is correct. In each case, write down the correct letter.
$9.1 \quad \frac{x^{2}}{y^{2}}=$.
A: $\frac{x}{y}$
C: $x-y$

B: $\frac{y}{x}$
D: cannot be simplified
$9.2 \sqrt{36 x^{16}}$
A: $6 x^{8}$
B: $6 x^{4}$
C: $18 x^{8}$
D: $18 x^{4}$
$9.3 \sqrt{\frac{64 a^{16}}{b^{36}}}=\ldots$

A: $\frac{8 a^{8}}{b^{18}}$
B: $\frac{8 a^{4}}{b^{6}}$
C: $\frac{32 a^{8}}{b^{18}}$
D: $\frac{64^{2} a^{32}}{b^{72}}$
9.4 If $p=-\frac{1}{2}$ then $-p^{2}=\ldots$
A: $\frac{1}{4}$
B: $-\frac{1}{4}$
C: -1
D: 1
$9.5 \quad a^{-1}+b^{-1}=\ldots$
A: $\frac{1}{a+b}$
B: $\frac{1}{a b}$
C: $-a-b$
D: $\frac{1}{a}+\frac{1}{b}$
10. The following statements are both false. In each case correct the right hand side.
$10.1 x^{2}+x^{2}=2 x^{4}$
$10.2 \frac{1}{6 x^{-2}}=6 x^{2}$
(1)(1)
11. State whether the following are True or False.

Give the correct solution where false.

EXPRESSION	TRUE OR FALSE	CORRECT SOLUTION, IF FALSE	
11.1	$2 \mathrm{a}^{-3}=\frac{1}{a^{3}}$		

2. Calculate the value of $(a b)^{c}$, where $a=1, b=5$ and $c=-2$.
3. Calculate the value of $a^{b}+b^{c}$, where

$$
\begin{equation*}
a=2, b=-1 \text { and } c=3 . \tag{3}
\end{equation*}
$$

$1.4 \quad 3^{x}=9$
$1.6 \quad 2^{x}=\frac{1}{4}$
$1.8 \quad 5^{2 x}=5$
$1.10 \quad 7^{x}=49$

Exercise 4.3

Solve for x in each of the following equations:

1.1	$2^{x}=2^{3}$
1.3	$3^{2 x}=3^{6}$
1.5	$8^{x}=64$
1.7	$7^{x}=1$
1.9	$11^{x}=121$
1.11	$3^{x-2}=81$

(10)

Answers on p. A18

Exercise 4.2

1. Calculate the value of $a \times b^{c}$, where

$$
\begin{equation*}
a=3, b=2 \text { and } c=-1 \tag{3}
\end{equation*}
$$

Remember to use the exponent laws

$1.2 \quad 5^{x-1}=5^{2}$
(1)(1)
(1)(1)
(1)(1)
(1)(1)
$11.10 \quad 5^{2} \div 5^{5}=\frac{1}{5^{3}}$

Exponential Equations

Substitution

6 FUNCTIONS \& RELATIONSHIPS (Part 1)

Exercise 6.1

Answers on p. A23

1. Write down the values of a, b, c and d.

(4)
2.

2.1 Fill in the operations at a and b.
2.2 Write down the value of c
(2)
3. Determine the output values for the following flow diagram:

4. Study the table below and answer the questions that follow:

Input (x)	1	2	3	4	5	6
Output (y)	4	7	10			

4.1 Complete the table
4.2 Draw an input-output flow diagram including a formula to describe the relationship between these input and output values, i.e. to illustrate the rule.
4.3 Is this a linear function? Give a reason for your answer.
5. Given the formula, $y=3 x-4$, copy and complete the following table:

6. Study the table below and answer the questions that follow:

Input (x)	1	2	3	4	5	6
Output (y)	5	2	-1	p	q	\mathbf{r}

6.1 Write down the values of \mathbf{p}, \mathbf{q} and \mathbf{r}.
6.2 Write down a formula to describe the relationship between the input and output values
6.3 Draw an input-output flow diagram

to illustrate the rule.
6.4 Is this a linear function? Give a reason for your answer
7. Study the following table:

\boldsymbol{x}	-2	-1	0	1	3
\mathbf{y}	-3	-1	1	3	7

7.1 Do the points form a linear or non-linear function? Give a reason.
7.2 Write down a formula to determine the relationship between x and y.
8. Use the equation $y=-2 x+3$ to complete the row of y-values in the following table.

9. Which of the following equations describes the relationship between x and y in the table below?

$$
\begin{aligned}
& \mathrm{y}=\mathrm{x}-1 ; \mathrm{y}=x^{2}-1 \quad ; \quad \mathrm{y}=2 x^{2}-2 \\
& \begin{array}{|c|c|c|c|}
\boldsymbol{x} & 1 & 2 & 3 \\
\mathrm{y} & 0 & 3 & 8
\end{array}
\end{aligned}
$$

10. Water is pumped from a dam into a reservoir. The following table of values represents the volume (V) of water in the reservoir at any given time (t).

Time (t) in minutes	10	20	30	40	50	60
Volume (V) in kilolitres	7	12	17	22	27	32

10.1 What is the increase in volume every 10 minutes?

10.2 Hence determine the rate of increase in kilolitres per minute.
10.3 Write down a formula that could be used to determine the volume of water in the reservoir at any given time.

QUADRILATERALS

All you need to know!

'Any' Quadrilateral

Sum of the \angle^{s} of any quadrilateral $=360^{\circ}$ $\left.\begin{array}{l}\text { Sum of the interior angles } \\ =(a+b+c)+(d+e+f) \\ =2 \times 180^{\circ} \quad \ldots\left(2 \Delta^{s}\right) \\ =360^{\circ}\end{array}\right)$

The arrows indicate various 'pathways' from 'any' quadrilateral to the square (the 'ultimate quadrilateral'). These pathways, which combine logic and fact, are essential to use when proving specific types of quadrilaterals.

See how the properties accumulate as we move from left to right, i.e. the first quad has no special properties and each successive quadrilateral has all preceding properties.

DEFINITION:

,

A Rectangle

DEFINITION:

A || ${ }^{m}$ with one right \angle

A Trapezium

Quadrilateral with 1 pair of opposite sides II

DEFINITION:
DEFINITION:
Quadrilateral with 2 pairs opposite sides ॥

THE DIAGONALS

- cut perpendicularly
- one diagonal bisects the other diagonal, the opposite angles and the area of the kite

A Parallelogram

The Square

11 GEOMETRY OF STRAIGHT LINES

Classifying 2D Shapes

STRAIGHT LINE GEOMETRY

- Important VOCABULARY

An acute angle is one that lies between $0^{\circ} \& 90^{\circ}$. An obtuse angle is one that lies between $90^{\circ} \& 180^{\circ}$. A reflex angle is one that lies between $180^{\circ} \& 360^{\circ}$.

A right angle $=90^{\circ}$
A straight angle $=180^{\circ}$
A revolution $=360^{\circ}$

When the sum of 2 angles $=90^{\circ}$, we say the angles are complementary.

When the sum of 2 angles $=180^{\circ}$, we say the angles are supplementary.

When 2 lines intersect, 4 angles are formed: $\hat{1}, \hat{2}, \hat{3}, \hat{4}$

Adjacent angles

have a common vertex and a common arm,
e.g. $\hat{1}$ and $\hat{2}, \hat{2}$ and $\hat{3}, \hat{3}$ and $\hat{4}$ or $\hat{1}$ and $\hat{4}$

Vertically opposite angles
lie opposite each other, e.g. $\hat{1}$ and $\hat{3}$ or $\hat{2}$ and $\hat{4}$.

- The FACTS

When 2 lines intersect:

- adjacent angles are supplementary
- vertically opposite angles are equal.

Copyright © The Answer Series: Photocopying of this material is illegal

These are pairs of co-exterior angles. These are never used.

Angle notation

We usually use letters, not numbers for angles. On this page the numbering is intended to show the connections between angles.

Important VOCABULARY

When 2 lines are cut by another line (a transversal), two families of angles are formed:

$$
\hat{1}, \hat{2}, \hat{3}, \hat{4} \text { and } \hat{5}, \hat{6}, \hat{7}, \hat{8}
$$

Both these groups are 'co-' angles
i.e. they are on the same side of the transversal

These are pairs of co-interior angles.
 supplementary.

Angles that 'alternate' are on opposite sides of the transversal.

These pairs of angles correspond.

Note: They are NOT necessarily equal.

The FACTS

When 2 PARALLEL lines are cut by a transversal, then the corresponding angles are equal, the (interior) alternate angles are equal, and the co-interior angles are supplementary.

\& CONVERSELY:

If the corresponding angles are equal, or if the (interior) alternate angles are equal, or if the co-interior angles are supplementary, then the lines are parallel.

Recognise these

18 VOLUME \& TOTAL SURFACE AREA OF 3D OBJECTS:
FORMULAE

$3 D$ Objects	TSA = sum of areas of all surfaces	Volume $=$ Area of base \times Height
	The total exterior area of all the exposed surfaces of a 3D shape.	The 3D space that a 3D object occupies.
Cube $s=\text { side }$	Total Surface Area $\begin{aligned} & =(\text { side } \times \text { side }) \times 6 \\ & =6(\text { side })^{2} \end{aligned}$ $\therefore \mathbf{T S A}=\mathbf{6 s}^{2}$	Volume $\begin{aligned} & =\text { side } \times \text { side } \times \text { side } \\ & =(\text { side })^{3} \\ & \quad \therefore \mathbf{V}=\mathbf{s}^{3} \end{aligned}$
Rectangular Prism $\begin{aligned} \ell & =\text { length } \\ \mathrm{b} & =\text { breadth } \\ \mathrm{h} & =\text { height } \end{aligned}$	Total Surface Area $=2$ (length \times breadth) + 2 (length \times height) + 2 (breadth \times height) \therefore TSA $=2 l b+2 l h+2 b h$	Volume $=$ length \times breadth \times height $\therefore \mathbf{v}=\ell \times \mathbf{b} \times \mathbf{h}$
Triangular Prism $\mathrm{a}=$ side $_{1}$ $\mathrm{b}=$ side $_{2}$ (base of the triangle face) c $=$ side $_{3}$ h $=\perp$ height of Δ $H=$ height of prism (distance between the 2 bases)	Total Surface Area $\begin{aligned} = & 2\left(\frac{b \times h}{2}\right) \\ & +\left(\text { side }_{1} \times \text { prism height }\right) \\ & +\left(\text { side }_{2} \times \text { prism height }\right) \\ & +\left(\text { side }_{3} \times \text { prism height }\right) \end{aligned}$ \therefore TSA $\begin{aligned} = & 2\left(\frac{b \times h}{2}\right) \\ & +(a \times H)+(b \times H) \\ & +(c \times H) \end{aligned}$	Volume $=$ area of base \times height of prism $\therefore \mathbf{V}=\left(\frac{\mathbf{b} \times \mathbf{h}}{2}\right) \times \mathbf{H}$ $\left(\begin{array}{ll} \text { Remember: } \\ \text { Area of } \Delta & \\ =\frac{1}{2} \mathrm{~b} \times \mathrm{h} & \text { OR } \end{array} \frac{\mathrm{b} \times \mathrm{h}}{2}\right) ~$

SI Units \& Conversions

| Small unit | \Rightarrow big unit: | \div |
| :--- | :--- | :--- | :--- |
| Big unit | \Rightarrow small unit: | \times |

Total Surface Area (TSA)

multiply

Since the area is the product of 2D lengths, we need to \times or \div by the (conversion factor) ${ }^{2}$.

Volume

divide

multiply

Since volume is the product of 3D lengths, we need to \times or \div by the (conversion factor) ${ }^{3}$.

4
 EXPONENTS

Exponential Expressions

Exercise 4.1

Questions on p. 12

$1.4 \quad 2^{5} \div 2^{2}=2^{5-}$
$=2^{3}$

$$
\text { Note: } \quad \frac{a^{m}}{a^{n}}=a^{m-n}
$$

1.7

1

Law 3: $\left(a^{m}\right)^{n}=a^{m n}$
$1.9 \quad\left(3^{x}\right)^{2}=3^{x \times 2}$ Make sure your letters and
numbers are clearly different,
e.g. a 5 and an scan easily get mixed up!

$$
\text { Law 4: }(a b)^{m}=a^{m} b^{m}
$$

$$
1.10(2 \times 5)^{2}=2^{2} \times 5^{2}
$$

$$
=4 \times 25
$$

Each factor in the bracket

$$
=100
$$

$=100$ needs to be raised to the powe e. the sign, the number \& each letter.
$1.11\left(3 x^{3}\right)^{3}=3^{3} \cdot x^{3 \times 3}$
$=27 x^{9}$
Note: $\left(a b^{m}\right)^{n}=a^{n} b^{m n}$
$\&(a b c \ldots)^{n}=a^{n} b^{n} c^{n}$
1.12
$1.12\left(-4 a^{5} b^{3}\right)^{2}$

$=4^{2} a^{5 \times 2} b^{3 \times 2}$
$=16 a^{10} b^{6}$

Law 5: $a^{0}=1 ; a \neq 0$
$1.135^{0}=1$
$1.147 a^{0}=7(1)$
$1.153 p^{0}+(3 p)^{0}$
$=3(1)+(1)$
= $3+1$
$=4$

Law 6: $a^{-n}=\frac{1}{a^{n}} \quad ; \quad a \neq 0$
$1.162^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
$1.17 x^{-4}=\frac{1}{x^{4}}$
$1.18 a^{3} \cdot b^{-4}=\frac{a^{3}}{b^{4}}$

Questions including Laws 1 \& 2
2.1 3a.2ab.3abc

$$
2.2 \begin{aligned}
& 2 x^{3} \times-3 x^{5} \\
= & -6 x^{3+5} \\
= & -6 x^{8}
\end{aligned}
$$

2.3

$2.4 \quad a^{-4} \times a^{7}$
$=a^{-4+7}$
$=8 a^{6}$
$=a^{3}$
2.5

$x^{3}\left(x^{2}\right)^{3} x^{0} x^{-2}$

OR
$x^{3}\left(x^{2}\right)^{3} x^{0} x^{-2}$
$=x^{3} x^{6}(1) x^{-2} \ldots$ using law 5
$=x^{3+6+0-2}$
$=x^{3+6-2}$
$=x^{7}$
$=x^{7}$
$2.6 \quad 6 a^{5} \times a \div 3 a^{2}$
$2.7 \quad 5 x^{3} y^{5} \times 3 x^{-2} y^{2}$
$=\frac{6 a^{6}}{3 a^{2}}$
$=15 x^{3-2} y^{5+2}$
$=2 a^{6-2}$
$=15 x y^{7}$
$=2 a^{4}$
$2.8 \quad 8 y^{3} \times \frac{1}{4} y^{2}$
$2.9 \quad \frac{a^{3} b^{2} c}{a b^{2} c^{3}}$
$=\frac{{ }^{2} 8 y^{3}}{1} \times \frac{y^{2}}{4_{1}}$
$=\frac{a^{2}}{c^{2}}$
$=2 y^{3+2}$
$=2 y^{5}$

Questions extending to Laws 5 \& 6

$4.1 \quad \frac{x^{-3}}{y^{-4}}=\frac{y^{4}}{x^{3}} \quad \cdots \quad x^{-3}=\frac{1}{x^{3}} \quad \& \frac{1}{y^{-4}}=y^{4}$ *
$4.2 \quad \frac{\mathrm{~m}^{5} \cdot \mathrm{n}^{-2} \cdot \mathrm{p}^{0}}{\mathrm{~m} \cdot \mathrm{n}^{3}} \quad 4.3 \quad \frac{x \cdot \mathrm{y}^{-2}}{x^{0} \cdot \mathrm{y}}$
$=\frac{m^{5-1} \cdot(1)}{n^{3+2}}$
$=\frac{x}{(1) y^{1+2}}$
$=\frac{m^{4}}{n^{5}}$
$=\frac{x}{y^{3}}$
$4.4 \quad \frac{x^{0}}{0,25}$
$4.5 \quad \frac{(5 \mathrm{~m})^{0}}{5 \mathrm{~m}^{0}}$
$=\frac{1}{\frac{1}{4}}$
$=\frac{1}{5(1)}=\frac{1}{5}$
$=1 \times \frac{4}{1}$
$=4$
$4.6 \quad\left(a^{-2}\right)\left(-3 a^{0}\right)$
$=\left(a^{-2}\right)(-3)$
$=\left(\frac{1}{a^{2}}\right)\left(\frac{-3}{1}\right)$
$=-\frac{3}{a^{2}}$
$4.7\left(-2 a^{4} b^{3}\right)^{2}\left(-3 a^{2} b^{0}\right)=4 a^{8} b^{6}\left(-3 a^{2}\right) \quad \ldots b^{0}=1$ 赦

$$
=-12 a^{10} b^{6}
$$

$4.8 \quad \frac{\left(2^{2} q^{-3}\right)^{0}\left(p^{-3} q\right)^{-2}}{\left(-2 p q^{-1}\right)^{2}}$

Remember...

Each factor in

he bracket needs to be raised to the exponent,
i.e. the sign, the number \& each letter.
$4.9 \quad \frac{\left(4 x^{3}\right)^{2}(-3 x)^{0}}{-6 x^{2}}=\frac{\left(16 x^{6}\right)(1)}{-6 x^{2}}$

$$
\begin{aligned}
& =-\frac{{ }^{8} 16 x^{6}}{{ }_{3}^{6} x^{2}} \\
& =-\frac{8 x^{4}}{3}
\end{aligned}
$$

Mixed Questions

$5.1 \quad 3^{-2}+3^{0}+3^{2}$
$=\frac{1}{3^{2}}+1+9$
$=\frac{1}{9}+\frac{1}{1}+\frac{9}{1}$
$=\frac{1+9+81}{9}$
$=\frac{91}{9}$
$5.2-5^{2} \div \sqrt[3]{-1}$
$=-25 \div(-1)$
$=25$

(2) 5

$$
5.3 \sqrt{3^{2}+3^{1}+3^{0}+3^{-1}+3^{-2}}
$$

$=\sqrt{9+3+1+\frac{1}{3}+\frac{1}{9}}$
$=\sqrt{\frac{13}{1}+\frac{1}{3}+\frac{1}{9}}$
$=\sqrt{\frac{117+3+1}{9}}$
$=\sqrt{\frac{121}{9}}$
$=\frac{11}{3}$

$$
=3-7+4
$$

$5.5 \quad \sqrt{9+16}$
= 0
$=5$
$5.6 \sqrt{\frac{18}{2}}-(-2)^{3}$
$5.7 \sqrt[3]{\frac{27}{8}}+\sqrt{2 \frac{1}{4}}$
$=\frac{3}{2}+\sqrt{\frac{9}{4}}$
$=3+8$
$=\frac{3}{2}+\frac{3}{2}$
= 11
$=\frac{6}{2}$
$=3$
5.8

Add first (like terms) !
$=\sqrt{100 x^{36}}$
$10 \times 10=100$
$=10 x^{18}$
$\therefore \sqrt{100}=10$
\& $x^{18} \times x^{18}=x^{18+18}=x^{36}$
$\therefore \sqrt{x^{36}}=x^{1}$
$5.9 \quad \sqrt{9 x^{10}+16 x^{10}} \quad 5.10 \quad \sqrt{144 \mathrm{a}^{6} \mathrm{~b}^{10}} \cdot\left(-2 \mathrm{ab}^{2}\right)$
$=\sqrt{25 x^{10}}$
$=\left(12 a^{3} b^{5}\right)\left(-2 a b^{2}\right)$
$=5 x^{5}$
$=-24 a^{4} b^{7}$
$5.11 \begin{array}{lll} & \sqrt{9(a+2 b)^{2} x^{4}} \quad \ldots & \text { Just as }(\sqrt{9}=) \sqrt{3^{2}}=3 \\ = & 3(a+2 b) x^{2}\end{array} \quad$ so $\sqrt{(a+2 b)^{2}}=a+2 b$
$=3 x^{2}(\mathrm{a}+2 \mathrm{~b})$
$=3 a x^{2}+6 b x^{2}$
$5.12 \sqrt{169 x^{14} y^{22}}$
$=13 x^{7} y^{11}$

$$
\begin{aligned}
& 13 \times 13=169 ; \\
& x^{7} \times x^{7}=x^{14} ; \\
& y^{11} \times y^{11}=y^{22}
\end{aligned}
$$

$$
\mid
$$

PAPER D1

Answers on p. M10
Approved scientific calculators (non-programmable and non-graphical) may be used.

QUESTION 1

Four options are given for each of the following questions. Only one answer is correct. Write the correct letter next to the question number, e.g. 1.7 A.
1.1 Simplify: $2 x-x(x+y)=\ldots$
A $x^{2}+x y$
B $2 x-x^{2}-x y$
C $x^{2}-x y$
D $2 x-x^{2}+x y$
1.2 The number 1 is NOT $a(n) \ldots$
A rational number
B whole number
C irrational number
D integer
1.3 All the fractions can be written as a(n)
A percentage
B decimal
C ratio
D option A; B and C (1)
$1.4 \sqrt{\frac{16 x^{4}}{y^{16}}}=\ldots$
A $\frac{4 x^{2}}{y^{4}}$
B
C $\frac{8 x^{2}}{y^{4}}$
D $\frac{4 x^{2}}{y^{8}}$

(2)
1.5 What is the missing number in the sequence?

2;5;10;...;26
A 15
B 25
C 17
D 20
1.6 The ratio $\frac{2}{5}: \frac{4}{6}: \frac{7}{15}$ simplifies to:
A 2:4:7
B $\frac{12}{30}: \frac{20}{30}: \frac{14}{30}$
C 12:20:14
D 6:10:7
(2) [9]

QUESTION 2

2.1 Determine the following products:

$$
\begin{equation*}
\text { 2.1.1 } \quad 3 x(y+4 z) \tag{1}
\end{equation*}
$$

2.2 Simplify the following:

$$
\begin{equation*}
\text { 2.1.2 }(2 x+1)^{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { 2.1.3 } \quad(2 x-1)(3 x+2) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { 2.1.4 }(2 x-5)(x-3)+(x+2)^{0}-(x-2)^{2} \tag{6}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { 2.2.1 } 10 x^{3} \div \frac{1}{2} x^{2} \\
\text { 2.2.2 } & \left(2 x^{2} \times \frac{1}{4} x y \times 8 x^{0}\right) \div(3 x \times 4 y) \\
2.2 .3 & \frac{6 x^{2}-24}{3 x^{2}+6 x} \\
2.2 .4 & \frac{2 x^{2} \times 4 \mathrm{y}}{3 y^{2} \times 4 x}+\frac{2 x^{2} \times 3}{2 x \times 9 y}
\end{array}
$$

2.3 An isosceles triangle is constructed by connecting three lines, two of which are equal to $2 x^{2}+2 x$. Determine the length of the remaining side in terms of x if the perimeter of the triangle is equal to $7 x^{2}+10 x$.

QUESTION 3

Factorise the following expressions:
$3.12 x^{2}+14 x$
$3.2 \quad x^{4}-16$
$3.3 \quad 4 x^{2}-36$
$3.4 \quad x^{2}+7 x+12$
(2)(3)
(4) $[14]$

QUESTION 4

4.1 Solve the following equations:

$$
\begin{array}{ll}
\text { 4.1.1 } & 10-3 x=1 \\
\text { 4.1.2 } & 3(x+2)=2-1(x+4) \\
\text { 4.1.3 } & 3 x(x+2)=2 x^{2}+12+x^{2} \\
\text { 4.1.4 } & \frac{2 x}{4}+\frac{1}{3}=\frac{-4}{6} \\
\text { 4.1.5 } & \frac{2 x^{2}+x}{x}=\frac{4 x^{2}+3}{2 x} \tag{4}
\end{array}
$$

4.2 Mrs Foster is very fussy about which colour jellybeans she eats. Her favourite colour is orange, and her least favourite is yellow. There are $x+9$ orange jellybeans in a packet and $2 x-3$ yellow jellybeans in the same packet, in which there is a total of $2(x+8)$ yellow and orange jellybeans.
4.2.1 Set up an equation that represents the above paragraph.
4.2.2 How many of her favourite jellybeans did Mrs Foster get in the packet of sweets?
4.3 Mrs Louw loves her girls hockey team and after looking at their season she decided that they had an excellent season as the ratio of games won to games lost was $5: 1$. In terms of x, they only lost $x+4$ games.
4.3.1 Determine, in terms of x, how many games the girls won.
4.3.2 Using your answer in Question 4.3.1 determine how many matches the girls played if in terms of x they played a total of 10x games.

Copyright © The Answer Series: Photocopying of this material is illegal
1.2 C ... an irrational number is a number with non-recurring decimals
1.3 D $\ldots \begin{aligned} & \text { these are } 3 \text { different ways } \\ & \text { of expressing } a \text { fraction }\end{aligned}$
1.4 D $\quad \ldots \sqrt{16}=4 ; \quad \sqrt{x^{4}}=x^{2} ; \quad \sqrt{y^{16}}=y^{8}$
$\begin{array}{llll}1.5 & \text { C } & \ldots & 2 \\ 3 & 5 & 10 & 17 \\ 7 & 17\end{array}$
$1.6 \quad$ D $\quad \ldots \frac{2}{5}: \frac{4}{6}: \frac{7}{15}$

PAPER D1

Questions on p. E10
$1.1 \quad \mathrm{~B}$

$$
\begin{aligned}
& 2 x-x(x+y) \\
& =2 x-x^{2}-x y
\end{aligned}
$$

$$
\because 4 \times 4=16 ; \quad x^{2} \times x^{2}=x^{4} ; \quad y^{8} \times y^{8}=y^{16}
$$

$\times 30$) $12: 20: 14 \rightarrow$ to make whole no's
$\div 2) 6: 10: 7 \rightarrow$ to simplify

Note

These two terms will always be the same when multiplying out a squared bracket. Noticing these kinds of patterns will make you more efficient and more confident.

$$
\begin{aligned}
\text { 2.1.3 } & (2 x-1)(3 x+2) \\
= & 6 x^{2}+4 x-3 x-2
\end{aligned}
$$

$=6 x^{2}+x-2$
2.1.4 $\quad(2 x-5)(x-3)+(x+2)^{0}-(x-2)^{2}$
$=2 x^{2}-6 x-5 x+15+1-(x-2)(x-2)$
$=2 x^{2}-11 x+16-\left(x^{2}-2 x-2 x+4\right)$
$=2 x^{2}-11 x+16-\left(x^{2}-4 x+4\right)$
$=2 x^{2}-11 x+16-x^{2}+4 x-4$
$=x^{2}-7 x+12$

There is no rush: take the pressure off by doing one thing at a time and focus on accuracy
2.2.1

$$
C
$$

$$
\frac{6 x^{2}-24}{3 x^{2}+6 x}
$$

$=\frac{6\left(x^{2}-4\right)}{3 x(x+2)}$
$=\frac{{ }^{2} \sigma(x+2)(x-2)}{1 \beta x(x+2)}$
$=\frac{2(x-2)}{x}$
2.2.4 $\frac{2 x^{2} \times 4 y}{3 y^{2} \times 4 x}+\frac{2 x^{2} \times 3}{2 x \times 9 y}$
$=\frac{28 x x^{2} y}{312 x(y)^{2}}+\frac{16(x)^{2}}{318 \not x(y)}$
Cancel carefully
when there is so
much going on.
$=\frac{2 x}{3 y}+\frac{x}{3 y}$
$=\frac{\beta x}{\beta y}$
Same denominators! So you can add numerators which happen to be like terms.
$=\frac{x}{y} \quad \ldots$ Always check to see if you can simplify
2.3 $P=$ Sum of all 3 sides
\therefore The remaining side
$=P-$ (sum of the 2 given sides)
$=7 x^{2}+10 x-\left(2 x^{2}+2 x+2 x^{2}+2 x\right)$
$=7 x^{2}+10 x-\left(4 x^{2}+4 x\right)$
$=7 x^{2}+10 x-4 x^{2}-4 x$
$=3 x^{2}+6 x$

THEOREM STATEMENTS \& ACCEPTABLE REASONS

LINES

The adjacent angles on a straight line are supplementary. If the adjacent angles are supplementary, the outer arms of these angles form a straight line.
\angle s on a str line
$\operatorname{adj} \angle$ supp

The adjacent angles in a revolution add up to 360°.	$\angle^{\text {s }}$ around a pt $\mathrm{OR} \angle^{\text {s }}$ in a rev		
Vertically opposite angles are equal.	vert opp \angle^{s}		
If $A B \\| C D$, then the alternate angles are equal.	alt $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$		
If $A B \\| C D$, then the corresponding angles are equal.	corresp $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$		
If $A B \\| C D$, then the co-interior angles are supplementary.	co-int $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$		

If the alternate angles the lines are parallel.
If the corresponding angles between two lines are equal, then the lines are parallel.
If the co-interior angles between two lines are supplementary, then the lines are parallel.

If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.
If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.

QUADRILATERALS

The interior angles of a quadrilateral add up to 360°.
The opposite sides of a parallelogram are parallel.
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.
The opposite sides of a parallelogram are equal in length.
If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram.
The opposite angles of a parallelogram are equal.
If the opposite angles of a quadrilateral are equal then the quadrilateral is a parallelogram.

The diagonals of a parallelogram bisect each other
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram.

The diagonals of a parallelogram bisect its area.
The diagonals of a rhombus bisect at right angles.
The diagonals of a rhombus bisect the interior angles.
All four sides of a rhombus are equal in length.

All four sides of a square are equal in length.	sides of square
The diagonals of a rectangle are equal in length.	diags of rect
The diagonals of a kite intersect at right-angles.	diags of kite
A diagonal of a kite bisects the other diagonal.	diag of kite
A diagonal of a kite bisects the opposite angles.	diag of kite

