Without the use of a calculator, determine the value of $\frac{999999^2}{222222 \times 666666}$

Level 4 Questions in the FET Phase

2. A square of side length 12 cm has straight lines drawn as shown below.

1.

- 3. Determine the units digit of $(5+1) \times (5^2+1) \times (5^3+1) \times ... \times (5^{2024}+1)$
- 4. If $(3p-5)^2 + (2q-p)^2 \le 1$ where p and q are integers, determine the value of p-q.
- 5. Determine the shaded area.

- 6. Determine the number of digits in $8^4 \times 35^3 \times 5^9$
- 7. In the diagram, AB = AC, $\widehat{ABE} = \widehat{BCD}$ and $\widehat{A} = 70^{\circ}$.

Determine the size of x.

- 8. A piece of rope 130 cm long, is cut into four pieces so that each piece is one and a half times the length of the previous piece. Determine the length of the longest piece.
- 9. ABCD is a rectangle with E and F the midpoints of AD and BC respectively.

Determine the ratio of the shaded area to the unshaded area.

- 10. Determine the highest common factor of $2^{2024} + 2^{2025}$ and $3^{2024} + 3^{2025}$.
- 11. The diagram, which is not drawn to scale, has AE = 7x-5, DE = 5x-7, BE = 2x-13 and CE = x-5.

Determine the area of ΔAED .

- 12. Without the use of a calculator, determine the value of x if $6! \times 7! = x!$
- 13. Without the use of a calculator, determine the value of $2^{0^{2^4}} + 4^{2^{0^2}} + 2^{4^{2^0}} + 0^{2^{4^2}}$
- 14. PQRS is a rectangle with T the midpoint of PS and V the midpoint of QR. A and B are drawn on PQ and SR respectively so that AVBT forms a rectangle.

Determine the area of PQRS in terms of x, if the area of AVBT is x units².

- 15. If today is Monday, what day of the week will it be in 2024 days time?
- 16. Three squares are drawn with sides 4 cm, 6 cm and 10 cm.

THE ANSWER SERIES Your Key to Exam Success

Determine the area of the shaded trapezium.

17. The numbers 1 to 8 are to be inserted in the boxes so that the product of the three numbers along each line gives the answer at the end.

Determine the value of x.

- Determine the length of the shortest side of a right angled triangle if the perimeter is
 168 units and the area is 756 units².
- 19. Two semi-circles of radius 1 unit are drawn between two parallel lines.

Determine the length of PQ.

A right angle is to be divided using only three lines in such a way so that you have angles of 10°; 20°; 30°; 40°; 50°; 60°; 70° and 80°. Draw a sketch to show how this is possible.

Note: you cannot add non-adjacent angles to form one of the required angles.

Level 4 Questions in the FET Phase Solutions

6.
$$8^{4} \times 35^{3} \times 5^{9}$$

= $(2^{3})^{4} \times (5 \times 7)^{3} \times 5^{9}$
= $2^{12} \times 5^{3} \times 7^{3} \times 5^{9}$
= $2^{12} \times 5^{12} \times 7^{3}$
= $10^{12} \times 343$
= $343\ 000\ 000\ 000\ 000$
∴ there are 15 digits.

C

A

В

7.
$$A\hat{B}C + A\hat{C}B = 110^{\circ} (\angle \text{ sum of } \Delta ABC)$$

 $\therefore A\hat{B}C = A\hat{C}B = 55^{\circ} (\angle \text{ s opp = sides})$
Let $A\hat{B}E = B\hat{C}D = y$
 $\therefore F\hat{B}C = 55^{\circ} - y$
 $\therefore x = 55^{\circ} - y + y = 55^{\circ} (\text{ext } \angle \text{ of } \Delta FBC)$

8.
$$x + \frac{3}{2}x + \frac{9}{4}x + \frac{27}{8}x = 130$$

$$\therefore 8x + 12x + 18x + 27x = 1\ 040$$

$$\therefore 65x = 1\ 040$$

$$\therefore x = 16$$

 \therefore the longest piece is 54 cm.

Looking at $\triangle PQR$ above: From the midpoint theorem, $ST = \frac{1}{2}QR$ \therefore Area $\triangle PST = \frac{1}{4}$ Area $\triangle PQR$... there are four congruent triangles

Looking at rectangle ABCD:

There are six triangles with the above situation.

 \therefore the ratio of the shaded area to the unshaded area in ABCD = 1:3.

10. $2^{2024} + 2^{2025} = 2^{2024} (1+2) = 3.2^{2024}$ $3^{2024} + 3^{2025} = 3^{2024} (1+3) = 4.3^{2024} = 2^2.3^{2024}$ ∴ the highest common factor is $2^2.3 = 12$

11. $\Delta AED \parallel \mid \Delta BEC \quad (AAA)$ $\therefore \ \frac{AE}{BE} = \frac{ED}{EC}$ $\therefore \frac{7x-5}{2x-13} = \frac{5x-7}{x-5}$ $\therefore 7x^2 - 40x + 25 = 10x^2 - 79x + 91$ $\therefore 3x^2 - 39x + 66 = 0$ $\therefore x^2 - 13x + 22 = 0$ $\therefore (x-11)(x-2) = 0$ $\therefore x = 11 \text{ or } x \neq 2$ $\therefore \text{ Area } \Delta AED = \frac{1}{2} \times DE \times EA$: Area = $\frac{1}{2}(5(11)-7)(7(11)-5)$ \therefore Area = 1 728 units²

12.
$$6! \times 7!$$
$$= 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 7!$$
$$= 6 \times 5 \times 3 \times 8 \times 7!$$
$$= 2 \times 3 \times 5 \times 3 \times 8 \times 7!$$
$$= 2 \times 5 \times 9 \times 8 \times 7!$$
$$= 10 \times 9 \times 8 \times 7!$$
$$= 10!$$
$$\therefore x = 10$$

13.
$$2^{0^{2^{4}}} + 4^{2^{0^{2}}} + 2^{4^{2^{0}}} + 0^{2^{4^{2}}}$$
$$= 2^{0^{16}} + 4^{2^{0}} + 2^{4^{1}} + 0^{2^{16}}$$
$$= 2^{0} + 4^{1} + 2^{4} + 0^{\text{big}}$$
$$= 1 + 4 + 16 + 0$$
$$= 21$$

 Δ ATV and rectangle PQVT have the same base, TV, and the same perpendicular height. 14. \therefore Area $\Delta ATV = \frac{1}{2}$ Area PQVT Similarly Area $\Delta BTV = \frac{1}{2}$ Area *SRVT*

$$\therefore$$
 Area *PQRS* = 2*x* units²

 $\frac{2024}{7} = 289 \text{ rem } 1$ 15.

 \therefore in 2024 days time it will be a Tuesday.

$$\therefore DE = \frac{1}{2}FG = 5 \text{ (conv. midpt thm)}$$

$$\Delta ABC \parallel\mid \Delta ADE \text{ (AAA)}$$

$$\therefore \frac{BC}{DE} = \frac{AB}{AD}$$

$$\therefore \frac{BC}{5} = \frac{4}{10}$$

$$\therefore BC = 2$$

$$\therefore Area \ BCED = \frac{1}{2}(2+5) \times 6 = 21 \text{ cm}^2$$

$$\therefore x = 8 \times 4 \times 2 = 64$$

17.

18. Area:
$$\frac{1}{2}xy = 756$$

 $\therefore xy = 1512$
 $x^2 + y^2 = (168 - x - y)^2$ (Pythag)
 $\therefore x^2 + y^2 = 28\ 224 + x^2 + y^2 - 336x - 336y + 2xy$
 $\therefore 336(x + y) = 28\ 224 + 2(1\ 512)$
 $\therefore 336(x + y) = 31\ 248$
 $\therefore x + y = 93$
 $\therefore y = 93 - x$
 $\therefore x(93 - x) = 1\ 512$
 $\therefore 93x - x^2 = 1\ 512$
 $\therefore x^2 - 93x + 1\ 512 = 0$
 $\therefore (x - 72)(x - 21) = 0$
 $\therefore x = 72$ or $x = 21$
 \therefore the shortest side is 21 units.

19.
$$AB = \sqrt{2^2 - 1^2} = \sqrt{3}$$

 $\therefore PQ = 2 + \sqrt{3}$ units.

20.

1

В

1

Q

